UNIVERSITY OF MUMBAI

Bachelor of Engineering

<u>Electronics & Telecommunication Engineering</u> (Second Year – Sem. III & IV), Revised course (REV- 2012) from Academic Year 2012 -13.

Under FACULTY OF TECHNOLOGY

(As per Semester Based Credit and Grading System)

Preamble:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's) and course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Semester based Credit and Grading system enables a much-required shift in focus from teachercentric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit and grading based system was implemented for First Year of Engineering from the academic year 2012-2013. Subsequently this system will be carried forward for Second Year Engineering in the academic year 2013-2014, for Third Year and Final Year Engineering in the academic years 2014-2015 and 2015-2016 respectively.

Dr. S. K. Ukarande Dean, Faculty of Technology, Member - Management Council, Senate, Academic Council University of Mumbai, Mumbai

Preamble:

The engineering education in India in general is expanding in manifolds. Now, the challenge is to ensure its quality to the stakeholders along with the expansion. To meet this challenge, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education and reflects the fact that in achieving recognition, the institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this accreditation process is to measure the outcomes of the program that is being accredited. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of graduation from the program. An engineering program must ensure that its graduates understand the basic concepts of science and mathematics, have gone through one engineering field in dept of appreciate and use its methodologies of analyses and design, and have acquired skills for lifelong learning.

An engineering program must therefore have a mission statement which is in conformity with program objectives and program outcomes that are expected of the educational process. The outcomes of a program must be measureable and must be assessed regularly through proper feedback for improvement of the programme. There must be a quality assurance process in place within the Institute to make use of the feedback for improvement of the programme. The curriculum must be constantly refined and updated to ensure that the defined objectives and outcomes are achieved. Students must be encouraged to comment on the objectives and outcomes and the role played by the individual courses in achieving them. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

I, as Chairman, Board of Studies in Electronics and Telecommunication Engineering University of Mumbai, happy to state here that, Program Educational Objectives were finalized in a meeting where more than 20 members from different Institutes were attended, who were either Heads or their representatives of Electronics and Telecommunication Engineering Department. The Program Educational Objectives finalized for undergraduate program in Electronics and Telecommunication Engineering are listed below;

- To provide students with a strong foundation in the mathematical, scientific and engineering fundamentals necessary to formulate, solve and analyze engineering problems and to prepare them for graduate studies.
- To prepare students to demonstrate an ability to identify, formulate and solve electronics and telecommunication engineering problems.
- To prepare students to demonstrate ability to design electrical and electronics systems and conduct experiments, analyze and interpret data.
- To prepare students to demonstrate for successful career in industry to meet needs of Indian and multi-national companies.
- To develop the ability among students to synthesize data and technical concepts from applications to product design.
- To provide opportunity for students to work as part of teams on multidisciplinary projects.
- To promote awareness among students for the life-long learning and to introduce them to professional ethics and codes of professional practice.

In addition to above more program educational objectives of their own may be added by affiliated Institutes.

In addition to Program Educational Objectives, for each course of undergraduate program, objectives and expected outcomes from learner's point of view are also included in the curriculum

to support the philosophy of outcome based education. I believe strongly that small step taken in right direction will definitely help in providing quality education to the stake holders.

Dr. Udhav Bhosle Chairman, Board of Studies in Electronics and Telecommunication Engineering

Programme structure B.E.(Electronics & Telecommunication) S.E. (Electronics & Telecommunication) Sem III

Sub	Subject Name	Teach	ing Schem	e (Hrs.)		Credits As	ssigned	
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETS301	Applied Mathematics III	04		01	04		01	05
ETC302	Analog Electronics I	04		-	04			04
ETC303	Digital Electronics	04		-	04			04
ETC304	Circuits and Transmission Lines	04			04			04
ETC305	Electronic Instruments and Measurements	04			04			04
ETS306	Object Oriented Programming Methodology							
ETL301	Analog Electronics I Laboratory		02			01		01
ETL302	Digital Electronics Laboratory		02			01		01
ETL303	Circuits and Measurements Laboratory		02	-		01		01
ETSL304	Object Oriented Programming Methodology Laboratory		*04			01		01
Total		20	10	01	20	04	01	25

*-Out of four hours, 2 hours theory shall be taught to entire class followed by 2 hrs.

Subject	Subject Name			E>	caminatio	on Scher	ne		
Code	-		The	ory Marks	Term	Practical	Oral	Total	
		Internal assessment			End Work		and Oral		
		Test	Test	Avg. of	Sem.				
		1	2	Test 1 &	Exam				
				Test 2					
ETS301	Applied Mathematics III	20	20	20	80	25			125
ETC302	Analog Electronics I	20	20	20	80				100
ETC303	Digital Electronics	20	20	20	80				100
ETC304	Circuits and Transmission	20	20	20	80				100
	Lines								
ETC305	Electronic Instruments and	20	20	20	80				100
	Measurements								
ETS306	Object Oriented								
	Programming Methodology								
ETL301	Analog Electronics I					25	25		50
	Laboratory								
ETL302	Digital Electronics					25	25		50
	Laboratory								
ETL303	Circuits and					25			25
	Measurements Laboratory								
ETSL304	Object Oriented					25	50		75
	Programming Methodology								
	Laboratory								
Total				100	400	125	100		725

Subject Code	Subject Name	Teach	ning Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETS 301	Applied Mathematics III	04		01	04	-	01	05	

Subject	Subject Name)					
Code			Theory Marks				Practical	Oral	Total
		Inte	Internal assessment End Sem.			Work			
		Test 1	Test 2	Avg. Of Test 1 and Test 2	Exam				
ETS 301	Applied Mathematics III	20	20	20	80	25			125

Course pre-requisite:

FES 101: Applied Mathematics I

FES 201: Applied Mathematics II

Course objectives:

- To provide students with a sound foundation in Mathematics and prepare them for graduate studies in Electronics and Telecommunication Engg.
- To provide students with mathematics fundamental necessary to formulate, solve and analyze engg. problems.
- To provide opportunity for students to work as part of teams on multi disciplinary projects.

Course outcomes:

- Students will demonstrate basic knowledge of Laplace Transform. Fourier series, Bessel Functions, Vector Algebra and Complex Variable.
- Students will demonstrate an ability to identify formulate and solve electronics and telecommunication Engg. problem using Applied Mathematics.
- Students will show the understanding of impact of Engg. Mathematics on Telecom Engg.
- Students who can participate and succeed in competitive exams like GATE, GRE.

Module No.	Unit No.	Topics	Hrs.
1.0		Laplace Transform	12
	1.1	Laplace Transform (LT) of Standard Functions: Definition. unilateral and bilateral Laplace Transform, LT of <i>sin(at), cos(at),</i>	
		e^{at} , t^{n} , sinh(at), cosh(at), erf(t), Heavi-side unit step, dirac-delta function, LT of periodic function	
	1.2	Properties of Laplace Transform: Linearity, first shifting	
		theorem, second shifting theorem, multiplication by t'' , division by	
		t, Laplace Transform of derivatives and integrals, change of scale, convolution theorem, initial and final value theorem, Parsavel's identity	
	1.3	Inverse Laplace Transform: Partial fraction method, long division method, residue method	
	1.4	Applications of Laplace Transform: Solution of ordinary differential equations	
2.0		Fourier Series	10
	2.1	Introduction: Definition, Dirichlet's conditions, Euler's formulae	
	2.2	Fourier Series of Functions: Exponential, trigonometric functions, even and odd functions, half range sine and cosine series	
	2.3	Complex form of Fourier series, orthogonal and orthonormal set of functions, Fourier integral representation	
3.0		Bessel Functions	08
	3.1	Solution of Bessel Differential Equation: Series method, recurrence relation, properties of Bessel function of order +1/2 and -1/2	
	3.2	Generating function, orthogonality property	
	3.3	Bessel Fourier series of functions	
4.0		Vector Algebra	12
	4.1	Scalar and Vector Product : Scalar and vector product of three and four vectors and their properties	
	4.2	Vector Differentiation: Gradient of scalar point function, divergence and curl of vector point function	
	4.3	Properties: Solenoidal and irrotational vector fields, conservative vector field	
	4.4	Vector Integral: Line integral, Green's theorem in a plane, Gauss' divergence theorem, Stokes' theorem	
5.0		Complex Variable	10
	5.1	Analytic Function: Necessary and sufficient conditions, Cauchy Reiman equation in polar form	
	5.2	Harmonic function, orthogonal trajectories	
	5.3	Mapping: Conformal mapping, bilinear transformations, cross ratio, fixed points, bilinear transformation of straight lines and circles	
		Total	52

Text books:

- 1. P. N. Wartikar and J. N. Wartikar, *"A Text Book of Applied Mathematic",* Vol. I & II, Vidyarthi Griha Prakashan
- 2. A. Datta, "Mathematical Methods in Science and Engineering", 2012
- 3. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publication

Reference Books:

- 1. B. S. Tyagi, "Functions of a Complex Variable," Kedarnath Ram Nath Publication
- 2. B. V. Ramana, "Higher Engineering Mathematics", Tata Mc-Graw Hill Publication
- 3. Wylie and Barret, "Advanced Engineering Mathematics", Tata Mc-Graw Hill 6th Edition
- 4. Erwin Kreysizg, "Advanced Engineering Mathematics", John Wiley & Sons, Inc
- 5. Murry R. Spieget, "Vector Analysis", Schaum's outline series, Mc-Graw Hill Publication

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work/ Tutorial:

At least 08 assignments covering entire syllabus must be given during the '**class wise tutorial**'. The assignments should be students' centric and an attempt should be made to make assignments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every assignment graded from time to time. The grades will be converted to marks as per '**credit and grading system'** manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Theory Practical Tutorial			TW	Tutorial	Total	
ETC 302	Analog Electronics I	4			4			04	

Subject	Subject		Examination Scheme								
Code	Name			Theory Marks	Term	Practical	Oral	Total			
		Internal assessment End Sem.				Work	and				
		Test Test Avg. Of			Exam		Oral				
		1	2	Test 1 and							
				Test 2							
ETC	Analog	20	20	20	80				100		
302	Electronics I										

Course pre-requisite:

- FEC102: Applied Physics I
- FEC105: Basic Electrical and Electronics Engineering

Course objectives:

- To understand physical operation of semiconductor devices
- To understand DC and AC models of semiconductor devices
- To apply concepts of DC and AC modeling of semiconductor devices for the design and analysis
- To verify the theoretical concepts through laboratory and simulation experiments.

Course outcomes:

After completion of this course students will be:

- Able to understand the current voltage characteristics of semiconductor devices.
- Able to understand and relate dc and ac models of semiconductor devices with their physical Operation.
- Able to perform design and analysis of electronic circuits
- Able to design analog system and components

Module No.	Unit No.	Topics	Hrs.
1.0	NO.	Diodes and their Applications	08
1.0	1.1	PN Junction Diode: Diode current equation, effect of temperature on diode	00
		characteristics, breakdown mechanism, diode as a switch, small signal model	
	1.2	Clippers and Clampers: Voltage transfer characteristics, series and shunt clippers,	
		single diode series and shunt clamper circuits	
	1.3	Other PN junction devices: Construction and operation of Varactor diode,	
		photodiode, Schottkey diode	
2.0		Field Effect Transistors	08
	2.1	Junction Field Effect Transistor (JFET): Construction, working, regions of operation, transfer (V_{GS} , Vs, I_D) and output (V_{DS} , Vs, I_D) characteristics, Schockely equation	
	2.2	Metal-Oxide Semiconductor Field Effect Transistor (MOSFET):	
		E-MOSFET: MOS capacitor, energy band diagram of MOS capacitor in accumulation, depletion and inversion region, concept of threshold voltage, operation of MOSFET, derivation of threshold voltage and drain current, body effect, channel length modulation	
		D-MOSFET: Construction and working	
3.0		DC Analysis of Transistor Circuits	10
	3.1	Bipolar Junction Transistor: Review of BJT characteristics, DC load line and	
		regions of operation, transistor as a switch, DC analysis of common BJT circuits,	
		analysis and design of fixed bias, collector to base bias and voltage divider bias,	
		stability factor analysis	
	3.2	Junction Field Effect Transistor: Analysis and design of self bias and voltage	
	3.3	divider bias MOSFET: DC load line and region of operation, common MOSFETs configurations,	
	3.3	analysis and design of biasing circuits	
4.0		Small Signal Analysis of BJT Amplifiers	10
-1.0	4.1	BJT CE Amplifier: Understanding of amplification concept with reference to	10
		input/output characteristics, AC load line analysis, definition of amplifier parameters	
		Z_i , Z_0 , A_v and A_i , graphical analysis to evaluate parameters	
	4.2	Small Signal mid Frequency Models: Hybrid-pi model, early effect, h-parameter	
		model	
	4.3	Small Signal Analysis: Small signal analysis (mid-frequency) (Zi, Zo, Av and Ai) of	
		CE, CB, and CC configurations using hybrid-pi model, comparison between CE, CB,	
		and CC configurations with reference to parameters	
5.0		Small Signal Analysis of FET Amplifiers	08
	5.1	JFET CS Amplifier: Small signal equivalent circuit and analysis (mid-frequency) $(Z_i,$	
		Z_0 and A_v)	
	5.2	E-MOSFET Amplifier: Graphical analysis to evaluate parameters, AC load line,	
		small signal model, small signal (mid-frequency) analysis of CS, CD and CG	
• • •		amplifiers	00
6.0	6.4	Oscillators (no numericals)	08
	6.1	Concepts of Oscillator: Concept of negative and positive feedback and conditions	
	6.2	for oscillation PC assillators : Dhase shift and Wain bridge	
	6.2	RC oscillators: Phase shift and Wein bridge	
	6.3	LC Oscillators: Hartley, Colpitts and Clapps Tuned Oscillator: Twin-T oscillator and crystal oscillator	
	6.4		52
		Total	52

Text Books:

- Donald A. Neamen, "Electronic Circuit Analysis and Design", Tata McGraw Hill, 2nd Edition
- 2. Adel S. Sedra, Kenneth C. Smith, and Arun N Chandorkar, *"Microelectronic Circuits Theory and Applications"*, International Version, OXFORD International Students, Sixth Edition

Recommended Books:

- 1. Sung-Mo Steve Kang, and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", TATA McGraw Hill,
- 2. S. Salivahanan, N. Suresh Kumar, *"Electronic Devices and Circuits"*, Tata Mc-Graw Hill, 3rd Edition
- 3. Jacob Millman, Christos C Halkias and Satyabrata G., *"Millman's Electronic Devices and Circuits"*, Mc-Graw Hill, 3rd Edition
- 4. Muhammad H. Rashid, *"Microelectronics Circuits Analysis and Design"*, Cengage Learning, 2nd Edition
- 5. Anil K. Maini and Varsha Agrawal, "Electronic Devices and Circuits", Wiley Publications

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teach	ning Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW	Tutorial	Total	
ETC 303	Digital Electronics	04			04			04	

Subject	Subject	Examination Scheme										
Code	Name		Theory Marks				Practical	Oral	Total			
		Int	Internal assessment E			Work	and oral					
		Test	Test	Avg. of Test	Sem.							
		1	2	1 and Test 2	Exam							
ETC303	Digital	20	20	20	80	-	-	-	100			
	Electronics											

Course objectives:

- To introduce the fundamental concepts and methods for design of various digital circuits.
- To build the skill of digital system design and testing used in various fields of computing, communication, automatic control of mechanisms and instrumentation.

Course outcomes:

After completion of course, students will be

- Able to distinguish between analog and digital signals & data.
- Able to analyze, transform & minimize combination logic circuits.
- Able to understand basic arithmetic circuits.
- Able to design and analyze sequential circuits.
- Able to design digital system and components.

Module No.	Unit No.	Topics	Hrs.
1.0		Number Systems and Codes	04
	1.1	Arithmetic codes: Review of number system, BCD code, Octal code, Hexa-	
		decimal code, EX-3 code, Gray code, ASCII Code	
2.0		Logic Gates and Combinational Logic Circuits	16
	2.1	DTL, TTL, ECL and CMOS gates: Transfer characteristics, noise margin, fan-in, fan-out, introduction to their logic families, their transfer characteristics and noise margin	
	2.2	Universal gates and combinational circuits : Realization of basic gates using NAND and NOR gates, Boolean algebra, De Morgan's theorem, SOP and POS representation, K-map up to five variables, Quine-McClusky method, variable entered mapping	
	2.3	Arithmetic circuits: Adder, subtractor, carry look ahead adder, BCD adder, magnitude comparator, binary multiplier, series and parallel adder	
	2.4	Multiplexer and de-multiplexer: Boolean functions implementation using multiplexer and de-multiplexer, encoder and decoder, parity generator and checker	
3.0		Sequential Logic Circuits	16
	3.1	Flip flops and registers: RS, JK, T, D and master slave flip flops, conversion of flip flops, universal shift registers	
	3.2	Counter design: Asynchronous and synchronous counter, up/down counter, mod-N counter, pre-settable counter, skipping state counter	
	3.3	Shift registers design: SISO, SIPO, PISO, PIPO, shift left and shift right registers	
	3.4	Applications of sequential circuits: Frequency division, ring counter, Johnson counter, Moore and Mealy machine, state transition diagram, synthesis table	
	3.6	State reduction techniques: Row elimination and implication table methods	
4.0		Different types of Memory	06
	4.1	Classification and characteristics of memory: SRAM, DRAM, ROM, PROM, EPROM and FLASH memories	
5.0		Introduction to Programmable Logic Devices	10
	5.1	CPLD and FPGA: Architecture of CPLD and FPGA, Xilinx XC 9500 CPLD Series and Xilinx XC 4000 FPGA Series	
	5.2	VHDL: Data types, Structural Modeling using VHDL, attributes, data flow, behavioral, VHDL implementation of basic combinational and sequential Circuits	
	5.3	Programmable Logic Devices: PLA and PAL	
		Total	52

Text Books:

- 1. Morris Mano and Michael D. Ciletti, *"Digital Design"*, Pearson Education, Fourth Edition, 2008.
- 2. Malvino A.P. and Leach D.P., "Digital Principles and Applications", TMH, 6th Edition

Reference Books:

- 1. John F. Warkerly, "*Digital Design Principles and Practices*", Person Education, Fourth Edition, 2008.
- 2. J. Bhaskar, "VHDL Primer", Prentice Hall, 3rd Edition
- 3. William I. Fletchter, "An Engineering Approach to Digital Design", PHI, Tenth Indian Reprint, 2001.
- 4. Norman Balabanian and Bradley Carlson, "*Digital Logic Design Principles*", John Wiley & Sons, First Edition, 2011.
- 5. A. Anand Kumar, "Fundamentals of Digital Circuits", PHI, Second Edition, 2012.
- 6. Charles H. Roth, *"Fundamentals of Logic Design"*, Jaico Publishing House, First Edition, 2004.
- 7. G. K. Kharate, "Digital Electronics", Oxford University Press, First Edition, 2010
- 8. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill Education, Third Edition 2003.
- 9. Frank Vahid, "Digital Design", John Willy and Sons, First Edition, 2011.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3: Question No.1 will be compulsory and based on entire syllabus.
- 4: Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teach	ning Schem	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	тw	Tutorial	Total	
ETC 304	Circuits and Transmission Lines	04			04			04	

Subject	Subject	Examination Scheme									
Code	Name		Th	eory Mark	S	Term	Practical	Oral	Total		
		Inter	Internal assessment End Sem.								
	Test Test Avg. of Exam										
		1	2	2 Tests							
ETC	Circuits and	20	20	20	80				100		
304	Transmission										
	Lines										

Course pre-requisite:

FEC 105: Basic electrical and electronics engineering

Partial fraction expansion, matrices, determinants calculus and differential equations,

Course objectives:

- To analyze and synthesize circuits and to become familiar with the propagation of signals through transmission lines.
- To analyze the circuits in time and frequency domain
- To study network functions, inter relationship among various circuit parameters, solve more complex network using these parameters.

Course outcomes:

- Through test, laboratory exercises and home assignment, students will be able to apply their knowledge in solving complex circuits.
- Students will be able to evaluate the time and frequency response which is useful in understanding behavior of electronic circuits and control system.
- Student will able to understand how the information in terms of voltage and current is transmitted through the transmission lines and importance of matching.

Module No.	Unit No.	Topics	Hrs.
1.0		Electrical circuit analysis	12
	1.1	Analysis of DC circuits: Analysis of circuits with and without controlled sources using generalized loop and node matrix methods and Source Transformation, Superposition, Thevenin, Norton, Millman theorems	
	1.2	Magnetic circuits: Self and mutual inductances, coefficient of coupling, dot convention, equivalent circuit, solution using loop analysis	
	1.3	Tuned coupled Circuits: Analysis of tuned coupled circuits	
2.0		Time and frequency domain analysis	10
	2.1	Time domain analysis of R-L and R-C circuits: Forced and natural response, time constant, initial and final values Solution using first order equation for standard input signals: Transient and steady state time response, solution using universal formula	
	2.2	Time domain analysis of R-L-C Circuits: Forced and natural response, effect of damping Solution using second order equation for standard input signals: transient and steady state time response	
	2.3	Frequency domain analysis of RLC Circuits: S-domain representation, applications of Laplace Transform in solving electrical networks, driving point and transfer Function, Poles and Zeros, calculation of residues by analytical and graphical method, analysis of ladder and lattice network Response to standard signals: Transient and steady state time response of R-L-C circuits	
3.0		Synthesis of RLC circuits	10
	3.1	Positive real functions: Concept of positive real function, testing for Hurwitz polynomials, testing for necessary and sufficient conditions for positive real functions	
	3.2	Synthesis of RC, RL, LC and RLC circuits: Properties and synthesis of RC, RL, LC driving point functions	
4.0		Two port circuits	10
	4.1	Parameters: Open circuits, short circuit, transmission and hybrid parameters, relationship among parameters, reciprocity and symmetry conditions.	
	4.2	Interconnections of two-port circuits, T & π representation.	
	4.3	Terminated two-port circuits.	
5.0		Radio frequency transmission lines	10
	5.1	Transmission Line Representation: T and Π representations, terminated transmission line, infinite line	
	5.2	Parameters of radio frequency lines: Propagation constant, attenuation constant, phase constant, group velocity, input impedance, characteristic impedance, reflection coefficient, standing wave ratio, VSWR, ISWR, S-parameters	
	5.3	Smith Chart: Impedance locus diagram, impedance matching	
		Total	52

Text Books

- 1. Franklin F Kuo, "Network Analysis and Synthesis", Wiley Toppan, 2nd.ed. 1966
- 2. W L Everitt and G E Anner, *"Communication Engineering"*, Mc-GrawHill, New York, 3rd Edition, 1956

Reference Books

- 1. M E Van Valkenburg, *"Network Analysis"*, Prentice-Hall of India Pvt Ltd, New Delhi, 26th Indian Reprint, 2000
- 2. K V V Murty and M S Kamth, "Basic Circuit Analysis", Jaico Publishing house, London
- 3. A Chakrabarti, "Circuit Theory", Dhanpat Rai & Co., Delhi, 6h Edition

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered for final Internal Assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3: Question No.1 will be compulsory and based on entire syllabus.
- 4: Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teach	ning Schemo	e (Hrs.)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW	Tutorial	Total		
ETC 305	Electronic Instruments and Measurements	04			04			04		

Subject	Subject Name		Examination Scheme										
Code			Tł	neory Marks		Term	Practical	Oral	Total				
		Internal assessment			End	Work	and oral						
		Test 1	Test 2	Avg. Of Test 1 and Test 2	Sem. Exam								
ETC 305	Electronic Instruments and Measurements	20	20	20	80				100				

Pre-requisites:

• Students are expected to have basic knowledge of analog and digital electronics

Course objectives:

- To understand basic functions and principle of working of sensors and components used in Electronic Measurement
- To understand principles of advanced electronic instruments and application in measurement of electronics parameters

Course outcomes:

- Students will learn measurement of physical parameters using various transducers and working of sensors.
- They will become familiar with basics of instruments and details of operation of measuring instruments and their applications.

Module No.	Unit No.	Topics	Hrs.
1.0		Principals of measurement	06
	1.1	Introduction to basic instruments: Components of generalized measurement system, applications of instrument systems, static and dynamic characteristics of instruments, concepts of accuracy, precision, linearity, sensitivity, resolution, hysteresis, calibration Errors in measurement: Errors in measurement, classification of errors, remedies	
	-,-	to eliminate errors	
2.0		Sensors and transducers	12
	2.1	Basics of sensors and transducers: Active and passive transducers, characteristics and selection criteria of transducers, working principle of Eddy- current sensors, Pizoelectric transducers, photoelectric and photo voltaic sensors, capacitive sensors	
	2.2	Displacement and pressure: Potentiometers, pressure gauges, Linear Variable Differential Transformers (LVDT) for measurement of pressure and displacement, strain gauges	
	2.3	Temperature transducers: Resistance Temperature Detectors (RTD), thermistors, and thermocouples, their ranges and applications	
3.0		Testing and measuring Instruments	10
	3.1	Analog multi-meter: Multi-range measurement of voltage, current and resistance, specifications	
	3.2	Measurement of resistance:Kellvin's double bridge, Wheatstone bridge, andMegaohm bridgeMeasurement of inductance:Maxwell bridge and Hey bridge;Measurement of capacitance:Schering bridgeQ-Meter:Operating principle and applicationsEnergy and power meters:Working of energy and power meter	
4.0		Data Acquisition and Digital Instruments	10
	4.1 4.2	 Data acquisition and converters: single channel, multichannel and PC based DAS A/D and D/A converters: Types and specifications of A/D and D/A converters, Significance of X¹/₂ digit display Digital multi-meter: Block diagram, multi range measurement of voltage, current and resistance, specifications 	
5.0		Oscilloscopes	08
	5.1	Cathode ray oscilloscope: Block diagram based Study of CRO, specifications, controls, sweep modes, role of delay line, single- and dual-beam dual-trace CROs, chop and alternate modes	
	5.2 5.3	Measurement using oscilloscope: measurement of voltage, frequency, rise time, fall time and phase difference. Lissajous figures in detection of frequency and phase Digital storage oscilloscope (DSO): Block diagram based study of DSO, study of	
		features like roll, refresh, storage mode and sampling rate; applications of DSO	
6.0		Signal analyzers	06
	6.1	Wave analyzers: Introduction to harmonic, total harmonic distortion analyzer; block diagram and applications of wave analyzers	
	6.2	Spectrum and network analyzers: Block diagram and applications	
		Total	<mark>52</mark>

Text Books:

- 1. H. Oliver and J. M. Cage, "*Electronic Measurement and Instrumentation*", McGraw Hill, 3rd edition, 2008
- 2. C. S. Rangan, G.R. Sarma, and V.S.V. Mani, *"Instrumentation Devices and Systems",* Tata McGraw Hill, 9th edition, 2007

Reference Books:

- 1. T. S. Rathore, *"Digital Measurement Techniques",* Narosa Publishing House, New Delhi, 2nd Edition, 2003
- 2. W. Cooper and A. Helfric, "*Electronic Instrumentation and Measurement Techniques*", PHI, 4th edition, 2009
- 3. H. S. Kalsi, "Electronics Instrumentation", Tata Mcgraw Hill, 2nd Edition, 2009

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered for final Internal Assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3: Question No.1 will be compulsory and based on entire syllabus.
- 4: Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teach	ning Scheme	e (Hrs.)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
ETS 306	Object Oriented Programming Methodology									

Subject	Subject	Examination Scheme									
Code	Name		1	Theory Marks		Term	Practical	Oral	Total		
		Int	Internal assessment End Sem.				and Oral				
		Test	Test Test Avg. Of Test Exam								
		1	2	1 and Test 2							
ETS 306	Object Oriented Programming Methodology										

Pre-requisites:

Course in Structured Programming Approach/ Any Programming Language

Course Objectives:

- To understand the concept of Object Oriented Programming
- To help student to understand use of programming language such as JAVA to resolve problems.
- To impart problems understanding, analyzing skills in order to formulate Algorithms.
- To provide knowledge about JAVA fundamentals: data types, variables, keywords and control structures.
- To understand methods, arrays, inheritance, Interface, package and multithreading and concept of Applet.

Course Outcomes:

- Students will be able to code a program using JAVA constructs.
- Given an algorithm a student will be able to formulate a program that correctly implements the algorithm.
- Students will be able to generate different patterns and flows using control structures and use recursion in their programs.
- Students will be able to use thread methods, thread exceptions and thread priority.
- Students will implement method overloading in their code.
- Students will be able to demonstrate reusability with the help of inheritance.
- Students will be able to make more efficient programs.

Module	Unit	Торіс	Hrs.
No. 1	No.	Eurodemontal concepts of chiest ariented programming	4
1	1.1	Fundamental concepts of object oriented programming	4
	1.1	Overview of programming Introduction to the principles of object-oriented programming:	-
	1.2	classes, objects, messages, abstraction, encapsulation, inheritance,	
		polymorphism, exception handling, and object-oriented containers	
	1.3	Differences and similarity between C++ and JAVA	
2	1.3	Fundamental of Java programming	4
2	2.1	Features of Java	-
·	2.1	JDK Environment & tools	-
•	2.2	Structure of Java program	-
	2.3	Keywords, data types, variables, operators, expressions	4
·	2.4	Decision making, looping, type casting	-
	2.6	Input output using scanner class	-
3	2.0	Classes and objects	6
•	3.1	Creating classes and objects	•
•	3.2	Memory allocation for objects	-
	3.3	Passing parameters to Methods	-
	3.4	Returning parameters	-
•	3.5	Method overloading	
-	3.6	Constructor and finalize ()	
-	3.7	Arrays: Creating an array	
	3.8	Types of array : One dimensional arrays ,Two Dimensional array,	
		string	
4		Inheritance, interface and package	6
	4.1	Types of inheritance: Single, multilevel, hierarchical	
	4.2	Method overriding, super keyword, final keyword, abstract class	
	4.3	Interface	
	4.4	Packages	
5		Multithreading	4
	5.1	Life cycle of thread	
	5.2	Methods	
	5.3	Priority in multithreading	
6		Applet	2
ŀ	6.1	Applet life cycle	
	6.2	Creating applet	
	6.3	Applet tag	
		Total	26

Text Books:

- 1. Rajkumar Buyya, "Object-oriented programming with JAVA", Mcgraw Hill
- 2. E Balgurusamy, "Programming with JAVA", Tata McGraw Hill

Reference Books:

- 1. Herbert Schildt, "The Complete Reference JAVA", Tata McGraw Hill
- 2. Barry Holmes and Daniel T. Joyce, "Object Oriented Programming with Java", Jones & Bartlett Learning

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW	Tutorial	Total	
ETL 301	Analog Electronics I Laboratory		02			01		01	

Subject	Subject				Examination	Schem	е		
Code	Name		Theory Marks				Practical	Oral	Total
		Inter	Internal assessment End Sem.				and		
		Test 1	Test 2	Avg. Of Test 1 and Test 2	Exam		Oral		
ETL 301	Analog Electronics I Laboratory					25	25	-	50

Term Work:

At least **10** experiments covering entire syllabus should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. The grades will be converted to marks as per '**credit and grading**' system manual and should be added and averaged. Based on the above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teacl	hing Schem	e (Hrs)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	тw	Tutorial	Total		
ETL 302	Digital Electronics Laboratory		02			01		01		

Subject	Subject		Examination Scheme									
Code	Name		Theory Marks				Practical	Oral	Total			
		Inte	Internal assessment End				and oral					
		Test 1	Test 2	Avg. of Test 1 and Test 2	Sem. Exam							
ETL302	Digital Electronics Laboratory					25	25	-	50			

Term Work:

At least **10** experiments covering entire syllabus should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. The grades will be converted to marks as per '**credit and grading**' system manual and should be added and averaged. Based on the above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teac	hing Schem	e(Hrs)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETL 303	Circuits and Measurement Laboratory		00			01		01	

Subject	Subject Name			E	xamination	Scheme			
Code	-		٦	Theory Marks		Term	Practical	Oral	Total
		Inte	ernal as	sessment	End Sem.	Work	and Oral		
		Test 1	Test 2	Avg. Of Test 1 and Test 2	Exam				
ETL 303	Circuits and Measurement Laboratory					25			25

Term Work:

At least **10** experiments (5 on Circuits and Transmission lines and 5 on Electronics Instruments and Measurements) covering entire syllabus should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. The grades converted into marks as per '**credit and grading'** System manual should be added and averaged. Based on this final term work grading and term work assessment should be done.

Subject Code	Subject Name	Teacl	hing Schem	e (Hrs)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETSL 304	Object Oriented Programming Methodology Laboratory		02+02*			01		01	

*-Out of four hours, 2 hours theory shall be taught to entire class followed by 2 hrs. practical in batches.

Subject	Subject Name			E	Examination	Scheme	•		
Code			Т	heory Marks	i	Term	Practical	Oral	Total
		Inte	rnal as	sessment	End Sem.	Work	and Oral		
		Test	Test	Avg. Of	Exam				
		1	2	Test 1 and Test 2					
ETSL 304	Object Oriented Programming Methodology Laboratory					25	50	-	75

Term Work:

At least **10** experiments covering entire syllabus should be set to have well predefined inference and conclusion. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. The grades will be converted to marks as per **Credit and Grading** System manual and should be added and averaged. Based on the above scheme grading and term work assessment should be done.

The Practical and oral examination will be based on entire syllabus.

Programme Structure B.E. (Electronics & Telecommunication) S.E. (Electronics & Telecommunication) Sem IV

Sub	Subject Name	Teach	ning Schem	e(Hrs.)		Credits As	ssigned	
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETS401	Applied Mathematics	04		01	04		01	05
ETC402	Analog Electronics II	04			04			04
ETC403	Microprocessors and Peripherals	04			04			04
ETC404	Wave Theory and Propagation	04			04		-	04
ETC 405	Signals and Systems	04		01	04	-	01	05
ETC406	Control Systems	04			04		-	04
ETL401	Analog Electronics II Laboratory		02			01		01
ETL402	Microprocessors and Peripherals Laboratory		02			01		01
ETL403	Software Simulation Laboratory		02			01		01
Total		24	06	02	24	03	02	29

Subject	Subject Name			Exar	mination	Scheme			
Code	-			heory Marks		Term	Practical	Oral	Total
		Int	ernal a	ssessment	End	Work	and Oral		
		Test 1	Test 2	Avg. Of Test 1 and Test 2	Sem. Exam				
ETS401	Applied Mathematics	20	20	20	80	25			125
ETC402	Analog Electronics	20	20	20	80				100
ETC403	Microprocessors and Peripherals	20	20	20	80				100
ETC404	Wave Theory and Propagation	20	20	20	80				100
ETC 405	Signals and Systems	20	20	20	80	25			125
ETC406	Control Systems	20	20	20	80				100
ETL401	Analog Electronics II Laboratory	-				25	25		50
ETL402	Microprocessors and Peripherals Laboratory					25	25		50
ETL403	Software Simulation Laboratory					25	25		50
Total				120	480	125	75		800

Subject Code	Subject Name	Teach	ning Schem	e(Hrs)	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETS 401	Applied Mathematics IV	04		01	04		01	05

Subject	Subject Name			E	Examination	Scheme			
Code			٦	heory Marks		Term	Practical	Oral	Total
		Inte	ernal as	sessment	End Sem.	Work			
		Test 1	Test 2	Avg. Of Test 1 and Test 2	Exam				
ETS 401	Applied Mathematics IV	20	20	20	80	25			125

Course pre-requisite:

FE C 101 : Applied Mathematics I

FE C 201 : Applied Mathematics II

SE S 301 : Applied Mathematics III

Course objectives:

This course will present the method of calculus of variations (CoV), basic concepts of vector spaces, matrix theory, concept of ROC and residue theory with applications.

- To provide students with a sound foundation in mathematics and prepare them for graduate studies in Electronics and Telecommunication Engineering
- To provide students with mathematics fundamental necessary to formulate, solve and analyze engineering problems.
- To provide opportunity for students to work as part of teams on multi disciplinary projects.

Expected outcomes:

- Students will able to apply method of calculus of variations to specific systems, demonstrate ability to manipulate matrices and compute eigenvalues and eigenvectors, Identify and classify zeros, singular points, residues and their applications.
- Students will demonstrate an ability to identify formulate and solve Telecommunication Engineering problem using applied mathematics.
- Students who can participate and succeed in competitive exams like GATE, GRE.

Module	Unit	Topics	Hrs.
No.	No.		
1. 0		Calculus of variation	10
	1.1	Euler Langrange equation, solution of Euler's Langrange equation (only results for different cases for function) independent of a variable, independent of another variable, independent of differentiation of a variable and independent of both variables	
	1.2	Isoperimetric problems, several dependent variables	
	1.3	Functions involving higher order derivatives: Rayleigh-Ritz method	
2.0		Linear algebra: vector spaces	12
	2.1	Vectors in n-dimensional vector space : Properties, dot product, cross product, norm and distance properties in n-dimensional vector space.	
	2.2	Metric spaces, vector spaces over real field, properties of vector spaces over real field, subspaces.	
	2.3	Norms and normed vector spaces	
	2.4	Inner products and inner product spaces	
	2.5	The Cauchy-Schwarz inequality, orthogonal Subspaces, Gram-Schmidt process	
3.0		Linear Algebra: Matrix Theory	15
	3.1	Characteristic equation, Eigenvalues and Eigenvectors, properties of Eigenvalues and Eigenvectors	
	3.2	Cayley-Hamilton theorem, examples based on verification of Cayley- Hamilton theorem	
	3.3	Similarity of matrices, Diagonalisation of matrix	
	3.4	Functions of square matrix, derogatory and non-derogatory matrices	
	3.5	Quadratic forms over real field, reduction of quadratic form to a diagonal canonical form, rank, index, signature of quadratic form, Sylvester's law of inertia, value-class of a quadratic form of definite, semi-definite and indefinite	
	3.6	Singular Value Decomposition	
4.0		Complex variables: Integration	15
	4.1	Complex Integration: Line Integral, Cauchy's Integral theorem for simply connected regions, Cauchy's Integral formula	
	4.2	Taylor's and Laurent's series	
	4.3	Zeros, singularities, poles of f(z), residues, Cauchy's Residue theorem	
	4.4	Applications of Residue theorem to evaluate real Integrals of different types	
		Total	52

Text books:

- 1) A Text Book of Applied Mathematics Vol. I & II by P.N.Wartilar & J.N.Wartikar, Pune, Vidyarthi Griha Prakashan., Pune
- 2) Mathematical Methods in science and Engineering, A Datta (2012)
- 3) Higher Engg. Mathematics by Dr. B.S. Grewal, Khanna Publication

Reference Books:

- 1) Todd K.Moon and Wynn C. Stirling, Mathematical Methods and algorithms for Signal Processing, Pearson Education.
- 2) Kreyszig E., Advanced Engineering Mathematics, 9th edition, John Wiley, 2006.
- 3) Linear Algebra- Hoffman & Kunze (Indian editions) 2002
- 4) Linear Algebra- Anton & Torres (2012) 9th Indian Edition.
- 5) Complex Analysis Schaum Series.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3: Question No.1 will be compulsory and based on entire syllabus.
- 4: Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work/Tutorial:

At least 08 assignments covering entire syllabus must be given during the **Class Wise Tutorial**. The assignments should be students' centric and an attempt should be made to make assignments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every assignment graded from time to time. The grades will be converted to marks as per **Credit and Grading System** manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	Теа	aching Sche (Hrs.)	eme	Credits Assigned			
		Theory	Practical	Tutorial	Theory	ΤW	Tutorial	Total
ETC 402	Analog	4			4			04
	Electronics II							

Subject	Subject	Examination Scheme										
Code	Name		Th	eory Marks		Term	Practical	Oral	Total			
		Inte	ernal as	ssessment	End	Work	and Oral					
		Test	Test	Avg. Of Test	Sem.							
		1	2	1 and Test 2	Exam							
ETC 402	Analog	20	20	20	80	-	-		100			
	Electronics											
	П											

Course Pre-requisite:

ETC: 302 – Analog Electronics I

Course Objective:

- To deliver the core concepts and reinforce the analytical skills learned in Analog Electronics I
- To motivate students to use MOS devices for designing and analyzing electronic Circuits which will help them to understand the fundamentals of VLSI design.

Expected Outcomes:

After completion of the course students will be able to

- Analyze and design multistage electronic Circuits.
- Differentiate between discrete and integrated biasing techniques.
- Differentiate between small signal and large signal Amplifiers.

Module No.	Unit No.	Topics	Hrs.
1.0	NO.	Frequency Response of Amplifiers	14
1.0	1.1	High Frequency Model: High frequency hybrid-pi equivalent Circuits of BJT and MOSFET, Miller effect and Miller capacitance, gain bandwidth product	
	1.1	Single Stage Amplifiers : Effect of capacitors (coupling, bypass, load) on frequency response of single stage BJT (CE, CC,CB configurations), MOSFET (CS,CG, CD configuration) amplifiers, low and high frequency response of BJT (CE, CB, CC) and MOSFET (CS, CG,CD) amplifiers	
	1.2	Multistage Amplifier: Low and high frequency response and mid – frequency analysis of multistage (CE-CE, CS-CS), cascode (CE-CB, CS-CG) Amplifiers, Darlington pair, design of two stage amplifiers	
2.0		Differential Amplifiers	10
	2.1	BJT Differential Amplifiers: Terminology and qualitative description, DC transfer characteristics, small signal analysis, differential and common mode gain, CMRR, differential and common mode input impedance	
	2.2	MOSFET Differential Amplifiers: DC transfer characteristics, small signal analysis, differential and common mode gain, CMRR, differential and common mode input impedance	
3.0		Integrated Circuits Biasing Techniques	08
	3.1	Current Mirror: Two transistor (BJT, MOSFET) current source, current relationship, output resistance.	
	3.2	Improved Current Source: Three transistor (BJT,MOSFET) current source	
	3.3	Special Current Source: Cascode (BJT, MOSFET) current source, Wilson and Widlar current sources	
4.0		Power Amplifiers	8
	4.1	Power Devices: Power BJTs, power MOSFETs, heat sinks	
	4.2	Classification: Class A, Class B, Class AB and Class C operation, and performance parameters	
	4.3	Transformer and Transfomerless Amplifiers : Transformer coupled Class A Amplifier, Class AB output stage with diode biasing, V_{BE} multiplier biasing, input buffer transistors, Darlington configuration	
5.0		Fundamentals of Operational Amplifier	08
	5.1	Fundamentals of Op-amp: characteristics of op-amp, high frequency effects on op-amp gain and phase, slew rate limitation,	
	5.2	Applications of Op-amps: Inverting and non-inverting amplifier, adder, abstractor, integrator, differentiator, active filters (first order low and high pass)	
6.0		DC Regulated Power Supply	04
	6.1	Series and Shunt Regulator: Regulator performance parameters, Zener shunt regulator, transistorized series and shunt regulator	
		Total	52

Text Books:

- 1. Donald A. Neamen, Electronic Circuit Analysis and Design, Tata McGraw Hill, 2nd Edition
- 2. Adel S. Sedra, Kenneth C. Smith and Arun N Chandorkar, Microelectronic Circuits Theory and Applications, Fifth Edition, International Version, OXFORD International Students Sixth Edition

Recommended Books:

- 1. S. Salivahanan, N. Suresh Kumar, *"Electronic Devices and Circuits"*, Tata McGraw Hill, 3rd Edition
- 2. Jacob Millman, Christos C Halkias, and Satyabratatajit, *"Millman's Electronic Devices and Circuits"*, McGrawHill, 3rd Edition
- 3. Muhammad H. Rashid, *"Microelectronics Circuits Analysis and Design"*, Cengage Learning, 2nd Edition
- 4. Jacob Milliman and Arvin Grabel, "Microelectronics" Tata McGrawHill, 2nd Edition
- 5. Anil K. Maini and Varsha Agrawal, "Electronic Devices and Circuits", Wiley Publications

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3: Question No.1 will be compulsory and based on entire syllabus.
- 4: Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETC 403	Microprocessors and Peripherals	4			4			04

Subject	Subject	Examination Scheme							
Code	Name	Theory Marks				Term	Practical	Oral	Total
		Internal assessment End Sem			End Sem.	Work	and		
		Test	Test	Avg. Of Test	Exam		Oral		
		1	2	1 and Test 2					
ETC403	Microproces	20	20	20	80	-	-	-	100
	sor and								
	Peripherals								

Course pre-requisite:

ETC 303 : Digital Electronics

Course objectives:

- To develop background knowledge and core expertise in microprocessor.
- To study the concepts and basic architecture of 8085, 8086, 80286, 80386, 80486 Pentium processor and Co-processor 8087.
- To know the importance of different peripheral devices and their interfacing to 8086.
- To know the design aspects of basic microprocessor.
- To write assembly language programs in microprocessor for various applications.

Course outcomes:

Students will learn

- The architecture and software aspects of microprocessor 8086
- Assembly language program in 8086 for various applications.
- Co-processor configurations.
- Various interfacing techniques with 8086 for various applications.
- Basic concepts of advanced microprocessors.

Module No.	Unit No.	Topics	Hrs.		
1.0		Architecture of 8085 and 8086 Microprocessor	08		
	1.1	8085 Architecture and pin configuration.			
	1.2	8086 Architecture and organization, pin configuration.			
	1.3	Minimum and Maximum modes of 8086.			
	1.4	Read and Write bus cycle of 8086.			
2.0	Instruction set and programming of 8086				
	2.1	8086 Addressing modes.			
	2.2	8086 Instruction encoding formats and instruction set.			
	2.3	Assembler directives.			
	2.4	8086 programming and debugging of assembly language program.			
3.0		Peripherals interfacing with 8086 and applications.	10		
	3.1	8086-Interrupt structure.			
	3.2	Programmable interrupt controller 8259A.			
	3.3	Programmable peripheral Interface 8255.			
	3.4	Programmable interval Timer 8254.			
	3.5	DMA controller 8257			
	3.6	Interfacing 8259A, 8255, 8254, 8257 with 8086 and their			
		applications			
4.0	4.0 ADC, DAC interfacing with 8086 and its application				
	4.1	Analog to Digital Converter (ADC) 0809			
	4.2	Digital to Analog Convertor (DAC) 0808			
	4.3	Interfacing ADC 0809, DAC 0808 with 8086 and their applications.			
	4.4	8086 based data Acquisition system.			
5.0		8086 Microprocessor interfacing	10		
	5.1	8087 Math coprocessor, its data types and interfacing with			
		8086.			
	5.2	Memory interfacing with 8086 microprocessor			
6.0		Advanced Microprocessors	06		
	6.1	Basic architectures of 80286, 80386, 80486 and Pentium processor.			
		Total	52		

Text Books:

- 1. Gaonkar R.S.: "Microprocessor Architecture Programming and Applications with the 8085" Penram International Pub, 5th Edition.
- 2. John Uffenbeck: "8086/8088 family: "Design, Programming and Interfacing", Prentice Hall, 2ndEdition
- 3. B. B. Brey: "The Intel Microprocessors 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium and Pentium Pro Processor", Pearson Pub, 8th Edition

Reference Books:

- 1. Hall D.V: "Microprocessor and Interfacing Programming and Hardware", Tata McGraw Hill, 2nd Edition.
- 2. A. K. Ray and K. M. Burchandi: "Advanced Microprocessor and Peripherals, Architecture Programming and Interfacing", Tata McGrawHill, 3rd Edition
- 3. Don Anderson, Tom Shanley: "Pentium Processor System Architecture", MindShare Inc., 2nd Edition
- 4. National Semiconductor: Data Acquisition Linear Devices Data Book
- 5. Intel Peripheral Devices: Data Book.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered for final Internal Assessment.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3: Question No.1 will be compulsory and based on entire syllabus.
- 4: Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teach	ing Schem	e (Hrs)	Credits Assigned			
		Theory	Theory Practical Tutorial Theory Practical Tutoria					Total
ETC 404	Wave Theory and Propagation	4			4		-	04

Subject	Subject			Examination Scheme								
Code	Name		Т	heory Marks	Term	Practical	Oral	Total				
		Inte	Internal assessment End Sem.									
		Test 1	Test 2	Avg. Of Test 1 and Test 2	Exam							
ETC 404	Wave Theory and Propagation	20	20	20	80		-	-	100			

Course Pre-requisite

Vector Algebra, Vector Integral

Course Objective:

- To understand basic laws of electrostatics and magnetostatics in vector form.
- To understand the propagation of wave in different media like dielectric and conducting media by solving wave equation and find parameters of media.
- To calculate energy transported by means of electromagnetic waves from one point to another and to study polarization of waves.
- To solve electromagnetic problems using different numerical methods.
- To extend the students' understanding about the propagation of the waves by different types such as ground waves and space waves.
- To study the factors affecting the wave during its propagation.
- To understand sky wave propagation; related parameters such as MUF, skip distance and critical frequency.

Expected Outcomes:

- Ability to find nature of electric or magnetic field produced due to different charge distributions.
- Ability to understand working of different equipments based on electromagnetic used in day to day life.
- Knowledge of behavior of EM waves and travelling of waves in free space as well as media.
- Able to find conditions for loss of signal.
- Able to apply numerical methods for designing antennas.
- An ability to select proper parameters for propagation of the waves by considering the factors affecting.
- Any ability to identify and solve problems related to the propagation of waves.
- To understand the basics of wave propagation required for the study of antennas.

Module No.	Unit No.	Topics	Hrs.
1.0		Basic Laws of electromagnetic & Maxwell's equations	13
	1.1	Fundamental laws of electromagnetic fields: Coulomb's law, Gauss's law, Bio-Savart's law, Ampere's law, Poisson's and Laplace equations	
	1.2	Boundary conditions: Static electric and magnetic fields	
	1.3	Maxwell's equations: Integral and differential form for static and time	
		varying fields and its interpretations	
	1.4	Applications of electromagnetic fields: Ink-jet printer, CRO,	
		electromagnetic pump	
2.0		Uniform plane wave equation and power balance	08
	2.1	Wave equation: Derivation and its solution in Cartesian co-ordinates	
	2.2	Solution of wave equations: Partially conducting media, perfect dielectrics	
		and good conductors, concept of skin dept	
	2.3	Electromagnetic Power: Poynting Vector and Power Flow in free space and	
2.0		in dielectric, conducting media	00
3.0	2.4	Plane Wave Propagation	06
	3.1	Polarization of wave; Elliptical. Linear and Circular	
	3.2	Propagation in different mediums: Behavior of waves for normal and oblique incidence in dielectrics and conducting media, propagation in	
		dispersive media	
4.0		Computational Electromagnetics	08
	4.1	Finite Difference Method (FDM): Neumann type and mixed boundary conditions, Iterative solution of finite difference equations, solutions using band matrix method	
	4.2	Finite Element Method (FEM) : Triangular mesh configuration, Finite element discretization, Element governing equations, Assembling all equations and solving resulting equations	
	4.3	Method of Moment (MOM): Field calculations of conducting wire, parallel conducting wires and complicated geometries	
5.0		Radio Wave Propagation	10
	5.1	Types of wave propagation: Ground, space and surface wave propagation, tilt and surface waves, impact of imperfect earth and earth's behavior at different frequencies	
	5.2	Space wave propagation: Effect of imperfection of earth, curvature of earth, effect of interference zone, shadowing effect of hills and building, atmospheric absorption, Super-refraction, scattering phenomena, troposphere propagation and fading	
6.0		Sky Wave Propagation	07
	6.1	Reflection and Refraction of waves : lonosphere and Earth magnetic field effect	
	6.2	Measures of Ionosphere Propagation: Critical frequency, Angle of incidence, Maximum unstable frequency, Skip distance, Virtual height, Variations in ionosphere and Attenuation and fading of waves in ionosphere	
		Total	52

Text Books:

- 1. J.A. Administer, "Electromagnetic", McGraw Hill Companies, 2nd Edition, 2006
- 2. Bhag Guru and Huseyin Hiziroglu, *"Electromagnetic field theory fundamentals"*, Cambridge University Press, 2nd Edition, 2010.
- 3. J.D. Kraus, R.J. Marhefka, A.S. Khan *"Antennas & Wave Propagation"*, McGraw Hill Publications, 4th Edition, 2011

Reference Books

- 1. R.K. Shevgaonkar, Electromagnetic Waves, TATA McGraw Hill Companies, 3rd Edition, 2009
- 2. R.L. Yadava, Antenna & Wave Propagation, PHI Publications, 1st Edition, 2011
- Edward C. Jordan, Keth G. Balmin, Electromagnetic Waves & Radiating Systems, Pearson Publications, 2nd Edition, 2006
- 4. Matthew N.D. SADIKU, Principles of Electromagnetics, Oxford International Student 4th Edition, 2007
- 5. W.H. Hayt, J.A. Buck, Engineering Electromagnetics, McGraw Hill Publications, 7th Edition, 2006.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered for final Internal Assessment.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3: Question No.1 will be compulsory and based on entire syllabus.
- 4: Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Te	aching Scho (Hrs.)	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory Practical Tutorial To				
ETC 405	Signals and Systems	04		01	04		01	05	

Subject	Subject		Examination Scheme								
Code	Name			Theory Marks		Term	Practical	Oral	Total		
		Int	Internal assessment End Sem.				And Oral				
		Test	Test	Avg. Of Test	Exam						
		1	2	1 and Test 2							
ETC 405	Signals and Systems	20	20	20	80	25			125		

Course pre-requisite :

ETS: 301 - Applied Mathematics III

ETC : 304 - Circuits and Transmission Lines

Course objectives:

- To introduce students to the idea of signal and system analysis and characterization in time and frequency domain.
- To provide foundation of signal and system concepts to areas like communication, control and comprehend applications of signal processing in communication systems.

Course outcomes:

- Students will be able to understand significance of signals and systems in the time and frequency domains
- Students will be able to interpret and analyze signal and report results.
- Students will be able to evaluate the time and frequency response of continuous and discrete time, system which is useful in understanding behavior of Electronics circuits and communication systems.

"

Module No.	Unit No.	Topics	Hrs.
1.0		Overview of signals and systems	06
	1.1	Introduction: Signals, systems, examples of systems for controls and communication, sampling theorem, sampling of continuous time signals, elementary signals, exponential, sine, step, impulse, ramp, rectangular, triangular and operations on signals	
	1.2	Classification of signals: Continuous and discrete time, deterministic and non deterministic, periodic and aperiodic, symmetric (even) and asymmetric (odd), energy and power, causal and anti-causal signals.	
2.0		Time domain analysis of Continuous Time and Discrete Time systems	12
	2.1	Classification of systems: Static and dynamic, time variant and time invariant, linear and nonlinear, causal and noncausal, stable and unstable systems.	
	2.2	Linear Time Invariant (LTI) systems: Representation of systems using differential /difference equation, Impulse, step and exponential response, system stability, examples on applications of LTI systems, convolution, impulse response of interconnected systems, auto-correlation, cross correlation, properties of correlation, analogy between correlation and convolution, total response of a system	
3.0		Laplace Transform	06
3.0	3.1	Overview of Laplace Transform: Laplace Transform and properties, relation between continuous time Fourier Transform and Laplace Transform, unilateral Laplace Transform.	
	3.2	Analysis of continuous time LTI systems using Laplace Transform: Transfer Function, causality and stability of systems, solution of differential equation using Laplace Transform.	
4.0		z – Transform	08
	4.1	z-Transform of finite and infinite duration sequences, relation between discrete time Fourier Transform and z-Transform, properties, Inverse z-Transform, one sided <i>z</i> –Transform.	
	4.2	Analysis of discrete time LTI systems using z-Transform : Transfer Function, causality and stability of systems, frequency response, relation between Laplace Transform and <i>z</i> –Transform.	
5.0		Fourier series of continuous and discrete time signals	10
	5.1	Review of Fourier series: trigonometric and exponential Fourier series representation of signals, magnitude and phase spectra, power spectral density and bandwidth. Gibbs phenomenon.	
	5.2	Properties of Fourier Series: Linearity, time shifting, time reversal, frequency shifting, time scaling, differentiation, symmetry. Parsevel's relation. Examples based on properties, analogy between Continuous Time Fourier Series (CTFS) and Discrete Time Fourier Series (DTFS).	
6.0		Continuous Time Fourier Transform (CTFT) and Discrete Time Fourier Transform (DTFT)	10
	6.1	Fourier Transform: Fourier Transform and Inverse Fourier Transform on periodic and non-periodic signals, limitations of Fourier Transform and need for Laplace and <i>z</i> -Transform	
	6.2	Properties of Fourier Transform: Linearity, time shifting, time reversal, frequency shifting, time and frequency scaling, modulation, convolution in time domain, differentiation in time domain, differentiation in frequency domain, symmetry. Parsevel's relation. Energy, power spectral density and bandwidth. Definition and problems on DTFT	
		Total	52

Text books

- 1. Nagoor Kani, Signals and Systems, Tata McGraw Hill, Third Edition, 2011.
- 2. B.P. Lathi, Principles of Linear Systems and Signals, Oxford, Second Edition, 2010.
- 3. Simon Haykin and Barry Van Veen, Signals and Sytems, John Wiley and Sons, Second Edition, 2004.

Reference books

- 1) Hwei. P Hsu, Signals and Systems, Tata McGraw Hill, Third edition, 2010
- 2) V. Krishnaveni and A.Rajeshwari, Signals and Systems, Wiley-India, First Edition 2012.
- 3) Narayana Iyer, Signals and Systems, Cenage Learning, First Edition 2011.
- 4) Michael J Roberts, Fundamentals of Signals and systems, Tata McGraw Hill, special Indian Economy edition, 2009.
- 5) Rodger E Ziemer, William H. Tranter and D. Ronald Fannin, Signals and Systems, Pearson Education, Fourth Edition 2009.
- 6) Alan V. Oppenhiem, Alan S. Willsky and S. Hamid Nawab, Signals and Systems, Prentice-Hall of India, Second Edition, 2002.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3: Question No.1 will be compulsory and based on entire syllabus.
- 4: Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

At least 08 assignments covering entire syllabus must be given during the "**Class Wise Tutorial**". The assignments should be students' centric and an attempt should be made to make assignments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every assignment graded from time to time. The grades will be converted to marks as per "**Credit and Grading System**" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	Te	aching Scho Hrs.	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETC 405	Control Systems	04	-		04			04	

Subject	Subject	Examination Scheme									
Code	Name		7	Theory Marks		Term	Practical	Oral	Total		
		Inte	Internal assessment End Sem.				And Oral				
		Test	Test	Avg. Of Exam							
		1	2	Test 1 and							
				Test 2							
ETC	Control	20	20	20	80				100		
405	Systems										

Course pre-requisite:

Dynamics; Differential Educations; Laplace Transforms.

Course objectives:

Objectives of this course are:

- To teach the fundamental concepts of Control systems and mathematical modeling of the system.
- To study the concept of time response and frequency response of the system.
- To teach the basics of stability analysis of the system

Course outcomes:

The outcomes of this course are:

- Students will be able to derive the mathematical model of different type of the systems.
- Students will understand the basic concepts of control system.
- Students will understand the analysis of systems in time and frequency domain.
- Students will be able to apply the control theory to design the conventional controllers widely used in the industries.

Module No.	Unit No.	Topics	Hrs.
1.0		Introduction to Control System Analysis	08
	1.1	Introduction: Open loop and closed loop systems, feedback and feed	
		forward control structure, examples of control systems.	
	1.2	Modeling: Types of models, impulse response model, state variable model,	
	4.0	transfer function model	
	1.3	Dynamic Response: Standard test signals, transient and steady state behavior of first and second order systems, steady state errors in feedback control systems and their types	
2.0		Mathematical Modeling of Systems	08
	2.1	Transfer Function models of various systems: Models of mechanical	
		systems, models of electrical systems, block diagram reduction, signal flow	
		graph, and the Mason's gain rule	
3.0		State Variable Models	12
	3.1	State Variable Models of Various Systems: State variable models of mechanical systems, state variable models of electrical systems	
	3.2	State Transition Equation: Concept of state transition matrix, properties of	
		state transition matrix, solution of homogeneous systems, solution of non-	
		homogeneous systems	
	3.3	Controllability and Observability: Concept of controllability, controllability	
		analysis of LTI systems, concept of observability, observability analysis of	
4.0		LTI systems	08
4.0	4.1	Stability Analysis In Time Domain Concepts of Stability: Concept of absolute, relative and robust stability,	00
	4.1	routh stability criterion	
	4.2	Root Locus Analysis: Root-locus concepts, general rules for constructing	
		root-locus, root-locus analysis of control systems, design of lag and lead	
		compensators	
5.0		Stability Analysis In Frequency Domain	08
	5.1	Introduction: Frequency domain specifications, response peak and peak	
		resonating frequency, relationship between time and frequency domain	
		specification of system, stability margins	
	5.2	Bode plot: Magnitude and phase plot; Method of plotting Bode plot; Stability	
	F 0	margins on the Bode plots; Stability analysis using Bode plot.	
	5.3	Nyquist Criterion: Polar plots, Nyquist stability criterions; Nyquist plot; Gain and phase margins.	
6.0		Optimal and Adaptive Control Systems	<mark>08</mark>
0.0	6.1	Optimal control: Performance measure for optimal control problems, the	00
	0.1	principle of optimality, concept of dynamic programming, fundamental of a	
		single Function, Functions involving several independent Functions,	
		constrained minimization of Functions	
	6.2	Adaptive Control Systems: Model reference adaptive control approach for	
		controller design, Neuro-Fuzzy adaptive control (only concept)	
		Total	<mark>52</mark>

Text books:

- 1. Nagrath, M.Gopal, "Control System Engineering", Tata McGraw Hill.
- 2. K.Ogata, *"Modern Control Engineering, Pearson Education",* IIIrd edition.
- 3. Benjamin C.Kuo, *"Automatic Control Systems, Eearson education"*, VIIth edition.

Reference Books:

- 1. Madam Gopal, Control Systems Principles and Design, Tata McGraw hill, 7th edition, 1997.
- 2. Normon, Control System Engineering, John Wiley & sons, 3rd edition.
- 3. Curtis Johnson, Process Control Instrumentation Technology, Pearson education fourth edition.
- 4. Dhanesh N. Manik, "Control Systems", Cengage Learning, 1st edition, 2012.
- 5. Sastry S. S., "Adaptive Control", PHI.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3: Question No.1 will be compulsory and based on entire syllabus.
- 4: Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teach	ning Schem	e (Hrs)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW	Tutorial	Total	
ETL 401	Analog Electronics II Laboratory		02			01		01	

Subject	Subject Name	Examination Scheme									
Code		Theory Marks Internal assessment			End	Term Work	Practical And Oral	Oral	Total		
		Test 1	Test 2	Avg. Of Test 1 and Test 2	Sem. Exam						
ETL 401	Analog Electronics II Laboratory					25	25		50		

Term Work:

At least **10** experiments covering entire syllabus should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. The grades converted into marks as per **Credit and Grading** System manual should be added and averaged. Based on this final term work grading and term work assessment should be done.

The Practical and Oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs)			Credits Assigned				
		Theory	Practical	Tutorial	Theory Practical Tutorial				
ETL402	Microprocessors and Peripherals Laboratory		02			01		1	

Subject	Subject			E	xamination S	on Scheme					
Code	Name			Theory Marks		Term	Practical	Oral	Total		
		Int	ernal a	ssessment	End Sem.	Work	and				
		Test	Test	Avg. Of Test	Exam		Oral				
		1	2	1 and Test 2							
ETL402	Microproces					25	25		50		
	sors and										
	Peripherals										
	Laboratory										

Term Work:

At least **10** experiments covering entire syllabus should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. The grades will be converted to marks as per '**credit and grading'** System manual and should be added and averaged. Based on the above scheme grading and term work assessment should be done.

The Practical and Oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teach	ning Schem	e (Hrs)		Credits As	signed	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETL 403	Software Simulation Laboratory		02			01		01

Subject	Subject Name			E	Scheme				
Code		Inte		Theory Marks	End Sem.	Term Work	Practical And Oral	Oral	Total
		Test 1	Test 2	Avg. Of Test 1 and Test 2	Exam				
ETL 403	Software Simulation Laboratory					25	25	-	50

Objectives

Students will demonstrate

- an ability to design a system and process as per needs/specifications.
- an ability to visualize and work on laboratory and multi disciplinary task.
- skills to use modern Engineering tools, software's and equipments to analyze problems.

Term Work:

At least 10 simulation based experiments from Analog Electronics, Digital Electronics, Circuits and Transmission, Microprocessor, Signals and Systems and Wave Theory and Propagation should be set to have well predefined inference and conclusion. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. The grades converted into marks as per Credit and Grading System manual should be added and averaged. Based on this final term work grading and term work assessment should be done. It is advisable to use required application software for simulation based experiments. Use of open source software should be encouraged.

Practical and oral examination will be based on simulation experiments.

UNIVERSITY OF MUMBAI

Bachelor of Engineering Electronics and Telecommunication Engineering

Third Year Engineering

(Sem. V and Sem. VI), (Rev-2012) effective from Academic Year 2014 -15

Under FACULTY OF TECHNOLOGY

(As per Semester Based Credit and Grading System)

From Dean's Desk:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's) and course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education. Semester based Credit and Grading System enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 3-2 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

Credit and grading based system was implemented for First Year of Engineering from the academic year 2012-2013. Subsequently this system will be carried forward for Second Year Engineering in the academic year 2013-2014, for Third Year and Final Year Engineering in the academic years 2014-2015 and 2015-2016 respectively.

Dr. S. K. Ukarande Dean, Faculty of Technology, Member - Management Council, Senate, Academic Council University of Mumbai, Mumbai

Preamble:

In the process of change in the curriculum there is a limited scope to have major changes in the fundamental subjects which are mainly part of second year of engineering. The exposure to the latest technology and tools used all over the world is given by properly selecting subjects and their hierarchy in pre-final and final year. Thus this syllabus is made to groom the undergraduate students best suited and competent in all respect with best possible efforts put in by the experts in framing detail contents of individual subjects.

The engineering education in India is expanding in manifolds and the main challenge is the quality education. All the stakeholders are very much concerned about it. To meet this challenge, the issue of quality needs to be addressed, debated and taken forward in a systematic manner.

An engineering program must ensure that its graduates understand the basic concepts of science and mathematics have gone through one engineering field and have acquired skills for life-long learning.

An engineering program must therefore have a mission statement which is in conformity with program objectives and program outcomes that are expected of the educational process. The outcomes of a program must be measureable and must be assessed regularly through proper feedback for improvement of the programme. There must be a quality assurance process in place within the institute to make use of the feedback for improvement of the programme. The curriculum must be constantly refined and updated to ensure that the defined objectives and outcomes are achieved. Students must be encouraged to comment on the objectives and outcomes and the role played by the individual courses in achieving them. In line with this Faculty of Technology, University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

I, the Chairman, Board of Studies in Electronics and Telecommunication Engineering University of Mumbai, am happy to state that, heads of the department and senior faculty from various Institutes took timely and valuable initiative to frame Program Educational Objectives as listed below.

- To provide students with a strong foundation in the mathematical, scientific and engineering fundamentals necessary to formulate, solve and analyze engineering problems and to prepare them for graduate studies.
- To prepare students to demonstrate an ability to identify, formulate and solve electronics and telecommunication engineering problems.
- To prepare students to demonstrate ability to design electrical and electronics systems and conduct experiments, analyze and interpret data.
- To prepare students to demonstrate for successful career in industry to meet needs of Indian and multi-national companies.
- To develop the ability among students to synthesize data and technical concepts from applications to product design.
- To provide opportunity for students to work as part of teams on multidisciplinary projects.
- To promote awareness among students for the life-long learning and to introduce them to professional ethics and codes of professional practice.

These are the suggested and expected main objectives and individual affiliated institute may add further in the list. In addition to Program Educational Objectives, for each course of undergraduate program, objectives and expected outcomes from learner's point of view are also included in the curriculum to support the philosophy of outcome based education. I believe strongly that small step taken in right direction will definitely help in providing quality education to the stake holders.

At the end, I must extend my gratitude to all the experts who contributed to make curriculum competent at par with latest technological development in the field of Electronics and Telecommunication Engineering.

Dr. Udhav Bhosle Chairman, Board of Studies in Electronics and Telecommunication Engineering

SEMESTER V

Course	Course Name	Teach	ing Scheme	e (Hrs.)		Credits A	ssigned	
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETC501	Microcontrollers and Applications	04			04			04
ETC502	Analog Communication	04			04			04
ETC503	Random Signal Analysis	04		01	04		01	05
ETC504	RF Modeling and Antennas	04			04			04
ETC505	Integrated Circuits	04			04			04
ETS506	Business Communication and Ethics		04 *			02		02
ETL501	Microcontrollers and Applications Laboratory		02			01		01
ETL502	Communication Engineering Laboratory I		02			01		01
ETL503	Communication Engineering Laboratory II		02			01		01
ETL504	Mini Project I		02			01		01
Total		20	12	01	20	06	01	27

* Out of 4 hours, 2 hours class wise theory and 2 hours batch wise practical

Course	Course Name			Ex	aminati	on Schei	ne		
Code			Theo	ry Marks		Term	Practical	Oral	Total
		Inter	rnal ass	sessment	End	Work	and Oral		
		Test Test Ave. of		Ave. of	Sem.				
		1	2	Test 1 &	Exam				
				Test 2					
ETC501	Microcontrollers and	20	20	20	80				100
	Applications								
ETC502	Analog Communication	20	20	20	80				100
ETC503	Random Signal Analysis	20	20	20	80	25			125
ETC504	RF Modeling and Antennas	20	20	20	80				100
ETC505	Integrated Circuits	20	20	20	80				100
ETS506	Business Communication					50			50
	and Ethics								
ETL501	Microcontrollers and					25	25		50
	Applications Laboratory								
ETL502	Communication					25	25		50
	Engineering Laboratory I								
ETL503	Communication					25	25		50
	Engineering Laboratory II								
ETL504	Mini Project I					25	25		50
Total		100	100	100	400	175	100		775

SEMESTER VI

Course	Course Name	Teach	ing Scheme	e (Hrs.)		Credits A	ssigned	
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETC601	Digital Communication	04			04			04
ETC602	Discrete Time Signal	04			04			04
	Processing							
ETC603	Computer Communication	04			04			04
	and Telecom Networks							
ETC604	Television Engineering	04			04			04
ETC605	Operating Systems	04			04			04
ETC606	VLSI Design	04			04			04
ETL601	Discrete Time Signal		02			01		01
	Processing Laboratory							
ETL602	Communication		02			01		01
	Engineering Laboratory III							
ETL603	Communication		02			01		01
	Engineering Laboratory IV							
ETL604	Mini Project II		02			01		01
Total		24	08		24	04		28

Course	Course Name			I	Examinatio	on Schem	e		
Code			The	ory Marks		Term	Practical	Oral	Total
		Inte	rnal asso	essment	End	Work	And		
		Test	Test	Ave. of	Sem.		Oral		
		1	2	Test 1 &	Exam				
				Test 2					
ETC601	Digital Communication	20	20	20	80				100
ETC602	Discrete Time Signal	20	20	20	80				100
	Processing								
ETC603	Computer	20	20	20	80				100
	Communication and								
	Telecom Networks								
ETC604	Television Engineering	20	20	20	80				100
ETC605	Operating Systems	20	20	20	80				100
ETC606	VLSI Design	20	20	20	80				100
ETL601	Discrete Time Signal					25	25		50
	Processing Laboratory								
ETL602	Communication					25	25		50
	Engineering Laboratory								
	III								
ETL603	Communication					25	25		50
	Engineering Laboratory								
	IV								
ETL604	Mini Project II					25	25		50
Total		120	120	120	480	100	100		800

Course	Course Name	Те	aching Sche	me	Credits Assigned						
Code		Theory	Practical	Tutorial	Theory	TW/	Tutorial	Total			
						Practical					
ETC501	Microcontroller	04			04			04			
	& Applications										

Course	Course Name		Examination Scheme								
Code				Theory Ma	rks	Term	Practical	Oral	Total		
		Inte	rnal as	sessment	End Sem.	Work					
		Test	Test	Ave. Of	Exam						
		1 2 Test 1									
				and							
				Test 2							
ETC501	Microcontroller	20	20	20	80	-	-	-	100		
	& Applications										

Course Pre – requisite:

- ETC303: Digital electronics
- ETC403: Microprocessor and Peripherals

Course Objectives:

- To develop background knowledge and core expertise of microcontroller.
- To know the importance of different peripheral devices and their interfacing to microcontrollers.
- To know the design aspects of microcontrollers.
- To write assembly language programs of microcontrollers for various applications.

Course Outcomes: At the end of course, a student will be able to

- Draw and describe architecture of 8051 and ARM7 microcontroller.
- Interface various peripheral devices to the microcontrollers.
- Write assembly language program for microcontrollers.
- Design microcontroller based system for various applications.

Module		Topics	Hrs
<u>No.</u> 1.	8051 N	Microcontroller	12
1.	1.1	Comparison between Microprocessor and Microcontroller	14
	1.2	Features, architecture and pin configurations	
	1.3	CPU timing and machine cycle	
	1.4	Input / Output ports	
	1.5	Memory organization	
	1.6	Counters and timers	
	1.7	Interrupts	-
	1.8	Serial data input and output	
2.		Assembly Language Programming.	
2.	2.1	Instruction set	08
	2.2	Addressing mode	
	2.3	Assembler directives	
	2.4	Programs related to: arithmetic, logical, delay, input, output port, serial	-
	2.7	communication, and interrupts	
3	8051 I	Interfacing and Applications	12
U	3.1	Interfacing of display: LED, LCD, and seven segment display	
	3.2	Keyboard Interfacing	
	3.3	Interfacing of ADC and DAC (0808/09)	
	3.4	Stepper motor and relay	
	3.5	Connection to RS 232 for serial communication	
	3.6	Manual and auto reset	
	3.7	IR based wireless communication system design	-
4	5.7	ARM7: A 32-bit Microcontroller	08
•	4.1	The RISC design philosophy	
	4.2	Concept of Cortex-A, the Cortex-R, and the Cortex-M	
	4.3	Features of ARM Microcontroller	-
	4.4	Operating modes	
	4.4	Architecture (ARM core dataflow model)	
	4.5		-
		Registers	-
	4.7	Current program status register	
	4.8	Pipeline Exacertions, interrupt and vestor table	-
	4.9	Exceptions, interrupt and vector table	
	4.0	Memory management	
5	4.11	ARM7 processor families	00
5	5 1	ARM7 Programming	08
	5.1	Instruction set for data processing, branching, load-store, software interrupt,	
	5.3	and program status register	
	5.2	Addressing modes Programming for APM7	
	5.3	Programming for ARM7	
6		Introduction to Embedded Systems	04
	6.1	Concepts of embedded systems	-
	6.2	Optimizing design matrices and common design matrices	-
	6.3	Study of embedded systems 1) Digital camera 2) Stepper motor controller	
		Total	52

Recommended Books:

- 1. M. A. Mazidi, J. G. Mazidi and R. D. Mckinlay, "*The 8051 Microcontroller & Embedded systems*", Pearson Publications, Second Edition 2006.
- 2. C. Kenneth J. Ayala and D. V. Gadre, "*The 8051 Microcontroller & Embedded system using assembly & 'C*'", Cengage Learning, Edition 2010.
- 3. Satish Shah, "The 8051 Microcontrollers", Oxford publication first edition 2010.
- 4. Andrew Sloss, Dominic Symes, and Chris Wright, "ARM System Developer's Guide" Morgan Kaufmann Publishers, First Edition 2004.
- 5. James A. Langbridge, "*Professional Embedded Arm Development*", Wrox, John Wiley Brand& Sons Inc., Edition 2014
- 6. Frank Vahid& tony Gavages "*Embedded system design A unified hardware / software introduction*", Wiley publication, Third edition 2002.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Course	Course Name	Те	aching Sch	eme		Credits Assi	gned			
Code		Theory	Practical Tutorial Theory TW/Practical Tutorial							
ETC502	Analog	04			04 0					
	Communication									

Course	Course Name		Examination Scheme								
Code			Т	heory Marl	KS	Term	Practical	Oral	Total		
		Inte	rnal ass	sessment	End Sem.	Work					
		Test	Test	Ave. Of	Exam						
		1 2 Test 1									
				and							
				Test 2							
ETC502	Analog	20	20	20	80	-	-	-	100		
	Communication										

Course Pre-requisite:-

- ETC302: Analog Electronics-I
- ETC405: Signals and Systems

Course Objective: To teach students

- The fundamentals of basic communication system.
- Various modulation and demodulation techniques used in analog communication, noise handling and multiplexing.
- The working principles of transmitters and receivers used in analog communication systems.

Course Outcomes: After successful completion of the course students will able to

- The different modulation and demodulation techniques used in analog communication.
- Identify and solve basic communication problems, analyze transmitter and receivers.
- Detect the errors that occur due to noise during transmission.
- Compare and contrast advantages and limitations of analog communication systems.

Module No.		Topics	Hrs
1		Basics of Communication System	04
	1.1	Block diagram, electromagnetic spectrum, signal bandwidth and power, types of communication channels	
	1.2	Types of noise, signal to noise ratio, noise figure, and noise temperature	
2		Amplitude Modulation and Demodulation	12
	2.1	Basic concept, signal representation, need for modulation	
	2.2	Spectrum, waveforms, modulation index, bandwidth, voltage distribution, and power calculation	
	2.3	DSBFC : Principles, modulating circuits, low level and high level transmitters	
		DSB suppressed carrier:- Multiplier modulator, nonlinear modulator, and switching	
		modulator,	
		Single Side Band (SSB):-Principle, Filter method, phase shift method and third method	
		Quadrature amplitude modulation (QAM), Independent sideband (ISB) and Vestigial Side Band (VSB) principles and transmitters	
	2.4	Amplitude demodulation: Diode detector, practical diode detector, and square law detector.	
	2.5	Applications of AM and use of VSB in broadcast television	
3		Angle Modulation and Demodulation	14
	3.1	Frequency modulation (FM): Basic concept, mathematical analysis, frequency spectrum of FM wave, sensitivity, phase deviation and modulation index, frequency	
		deviation and percent modulated waves, bandwidth requirement of angle modulated waves, deviation ratio, narrow Band FM, and Wide Band FM.	
	3.2	Varactor diode modulator, FET reactance modulator, stabilized reactance modulator-	
		AFC, Direct FM transmitter, indirect FM Transmitter, noise triangle in FM, pre-	
		emphasis and de-emphasis.	-
	3.3	Phase modulation (PM): Principle and working of Transistor direct PM modulator	
		and relationship and comparison between FM and PM	-
	3.4	FM demodulation: Balance slope detector, Foster-Seely discriminator, ratio detector, Phase lock loop(PLL) FM demodulator, amplitude limiting and thresholding, comparison between FM demodulators, comparison between AM, FM and PM.	
	3.5	Applications of FM and PM	-
4	5.5	Radio Receivers	10
т	4.1	TRF, Super-heterodyne receiver, receiver parameters, and choice of IF.	10
	4.2	AM receiver circuits and analysis, simple AGC, delayed AGC, forward AGC, and	
	7.2	communication receiver	
	4.3	FM receiver circuits, comparison with AM receiver	-
	4.4	Single and independent sideband (SSB and ISB) receivers	1
5		Sampling Techniques	04
-	5.1	Theorem for low pass and band pass signals, proof with spectrum, Nyquist criteria	
	5.2	Sampling techniques, aliasing error, and aperture effect	1
6	5.2	Pulse Modulation and Demodulation	08
0	6.1	PAM, PWM, PPM generation and detection	00
	6.2	Delta modulation, adaptive delta modulation, principle, generation and detection	
		TDM and FDM basic concepts and block diagram	-
	6.3		-
	6.4	Applications of pulse communication Total	52

Recommended Books:

- 1. WayneTomasi, "Electronics Communication Systems", Pearson education, Fifth edition.
- 2. Kennedy and Davis, "*Electronics Communication System*", Tata McGraw Hill, Fourth edition.
- 3. B.P. Lathi, Zhi Ding, "Modern Digital and Analog Communication system", Oxford University Press, Fourth edition
- 4. Taub, Schilling and Saha, "*Taub's Principles of Communication systems*", Tata McGraw Hill, Third edition.
- 5. P. Sing and S.D. Sapre, "Communication Systems: Analog and Digital", Tata McGraw Hill, Third edition.
- 6. Simon Haykin, Michel Moher, "Introduction to Analog and Digital Communication", Wiley, Second edition.
- 7. Dennis Roddy and John Coolen, "*Electronic Communication*", Prentice Hall, Third Edition.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Course	Course	Те	aching Sche	eme	Credits Assigned					
Code	Name	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
ETC503	Random	04		01	04		01	05		
	Signal									
	Analysis									

Course	Course				Examination Sector	cheme			
Code	Name			Theory Marl	KS	Term	Practical	Oral	Total
		Internal assessment End Ser			End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
ETC503	Random	20	20	20	80	25	-	-	125
	Signal								
	Analysis								

Course Pre – requisite:

- ETC 405: Signals and Systems
- ETC 401: Applied Mathematics IV

Course Objective: To teach students

- Random Variables and Random Process
- The design of the systems which involves randomness using mathematical analysis and computer simulations.

Course Outcome : At the end of the course, students will able to

- Apply theory of probability in identifying and solving relevant problems.
- Define and differentiate random variables and vector through the use of cumulative distribution function (CDF), probability density function (PDF), probability mass function (PMF) as well as joint, marginal and conditional CDF, PDF and PMF.
- Show probability and expectation computations using important discrete and continuous random variable types.
- Define and specify random processes and determine whether a given process is stationary or wide sense stationary.
- Determine the response of a linear time invariant system to such a random process.
- Describe basic concepts related to Markov chains and queuing theory and relate it to seal world applications.

Module No.		Overview of Probability Theory and Basics of Random Variables	Hrs.
1	1.1	Sample space, events, set operations, the notion and axioms of probability.	10
	1.2	Conditional probability, Joint probability, Baye's rule, Independence of events, Sequential Experiments.	
	1.3	Notion of random variable.	
	1.4	Continuous random variables, probability density function, probability distribution function, Uniform, Exponential and Gaussian continuous random variables and distributions.	
	1.5	Discrete random variables, probability mass function, probability distribution function, binomial, Poisson and geometric discrete random variables and distributions	
2		Operations on One Random Variable	07
	2.1	Functions of a random variable and their distribution and density functions.	
	2.2	Expectation, Variance and Moments of random variable.	
	2.3	Transformation of a random variable, Markov, Chebyshev and Chernoff bounds,	
		characteristic functions, moment theorem	
3		Multiple of Random Variables And Convergence	08
	3.1	Vector random variables, Pairs of random variables, Joint CDF, Joint PDF Independence, Conditional CDF and PDF, Conditional Expectation	
	3.2	One function of two random variable, two functions of two random variables; joint moments, joint characteristic function, covariance and correlation-independent, uncorrelated and orthogonal random variables.	
4		Sequence Of Random Variables And Convergence:	05
-	4.1	Random sequences, Limit theorems; Strong and weak laws of large numbers,	05
	4.2	Central limit theorem and its significance.	
5	7.2	Random Process	10
5	5.1	Random process: Definition, realizations, sample paths, discrete and continuous time processes	10
	5.2	Probabilistic structure of a Random process; mean, correlation and covariance functions, stationarity of random process.	
	5.3	Ergodicity, Transmission of WSS random process through LTI system	
	5.4	Spectral analysis of random processes, power density spectrum bandwidth, cross- power density spectrum.	
	5.5	Gaussian and Poisson random process	
6		Markov Chains And Introduction To Queuing Theory	12
	6.1	Markov processes	
	6.2	Discrete Markov chains, The n-step transition probabilities, steady state probabilities.	
	6.3	Introduction to Continuous time Markov chains.	
	6.4	Classifications of states.	
	6.5	Markovian models	
	6.6	Birth and death queuing models	
	6.7	Steady state results	
	6.8	Single and Multiple server Queuing models	
	6.9	Finite source models	
	6.10	Little's formula	
	VILU	Total	52

- 1. Alberto Leon Garcia, "Probability And Random Processes For Electrical Engineering", second edition Low price edition Pearson education.
- 2. Miller, "Probability And Random Processes-With Applications to Signal Processing and Communication", first edition 2007, Elsevier.
- 3. Papoulis and S. Unnikrishnan Pillai, "*Probability, Random Variables and Stochastic Processes*," Fourth Edition, McGraw Hill.
- 4. H. Stark and J. Woods, *"Probability and Random Processes with Applications to Signal Processing,"* Third Edition, Pearson Education.
- 5. Hwei Hsu, "Probability Random Variable,s Random Process, Schaulm's Outlines, Tata McGraw Hill, 2004.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Course Code	Course Name	Teaching Scheme			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/	Tutorial	Total	
						Practical			
ETC504	RF Modeling and Antennas	04			04			04	

Course	Course Name		Examination Scheme								
Code				Theory Mar	ks	Term	Practical	Oral	Total		
		Internal assessment			End Sem.	Work					
		Test	Test	Ave. Of	Exam						
		1	2	Test 1 and							
				Test 2							
ETC504	RF Modeling	20	20	20	80	-	-	-	100		
	and Antennas										

Course Pre –requisite: : ETC 404: Wave Theory and Propagation

Course Objective: To teach students

- Design of different types of passive filters used for radio frequency application.
- Radiation phenomena and pattern of various antennas.
- The various characteristics of different types of antennas.

Course Outcome: On Completion of this course Student will be able to

- Analyze and design RF Filters
- Analyze the radiation mechanisms of antennas
- Demonstrate knowledge of antennas in communication systems. Ability to discriminate between antennas on the basis of their electrical performance.
- Discriminate various antennas on the basis of their electrical performance.

Module No.		Topics	Hrs
1.		Behavior of Active and Passive Components in RF range	04
	1.1	Frequency Spectrum, hazards of Electromagnetic Radiations, and fundamentals of radio frequency design	
	1.2	High Frequency behavior, equivalent circuit and frequency response of resistor, capacitor, inductor, diode, BJT, and FET	
	1.3	Characteristics, structure and applications of coaxial line, stripline, microstrip line, and coplanar lines	
2		Filter Design	12
	2.1	Analysis of infinite periodic structures terminated Periodic structures, k - β diagrams and wave velocities.	
	2.2	Image Parameter Method: Image impedances and transfer functions for two port networks, constant-k filter sections, m-derived filter sections, and composite filters	
	2.3	Insertion Loss Method: Characterization by power loss ratio, maximally flat, equal ripple, and linear phase low pass filter prototype.	
	2.4	Filter transformations: impedances, frequency scaling, and band pass and band stop	1
	2.5	Richard's transformation, Kuroda's identity, impedance, and admittance inverters	1
3		Fundamentals of Antenna	14
	3.1	Conceptual understanding and radiation mechanism	
	3.2	Fundamental Parameters of Antennas: Radiation pattern, radiation power density,	
		radiation intensity, beam width, directivity, antenna efficiency, gain, beam efficiency, bandwidth, input impedance, antenna radiation efficiency, antenna vector effective length and equivalent areas, maximum directivity and maximum effective areas.	
	3.3	Friss transmission equation, antenna temperature	
	3.4	Vector potential A for an electric current source J , vector potential F for an magnetic current source M , electric and magnetic fields for electric J and Magnetic M current	
4		sources, and concept of near and far field radiation.	14
4	4.1	Wire Antennas	1
	4.1	Infinitesimal dipole and small dipole: Radiation field, near field, far field directivity, region separation	
	4.2	Finite Length dipole: Basic parameters of half wavelength dipole, folded dipole	
	4.3	Monopole antenna	
	4.4	Ground Effects	
	4.4	Linear elements near or on infinite perfect conductors	-
	4.5	Loop antennas: Basic parameters	-
5	7. U	Antenna Arrays:	0
5	5.1	Linear arrays, planner arrays, and circular arrays	
	5.1	Array of two isotropic point sources, non-isotropic sources	1
	5.2	Principle of pattern multiplication,	1
	5.4	Linear arrays of n elements, broadside, radiation pattern, directivity, beam width and	1
	J	null directions, array factor	
	5.5	Antenna analysis using Binomial, Dolph-Tschebyscheff, Yagi Uda antenna	1
6	5.5	Special types of antennas	08
U	6.1	Frequency Independent Antennas: Log periodic and helical antennas	
	0.1	Microstrip Antennas: Characteristics, applications and limitations	
	6.2	Reflector Antennas and Horn Antennas: Characteristics, applications and limitations	
	1	Total	5

Recommended Books:

- 1. David M Pozar, "*Microwave Engineering*", John Wieley and Sons, Inc. Hobokenh, New Jersey, Fourth Edition, 2012
- 2. Costantine A. Balanis, "Antenna Theory Analysis And Design", John Wiley Publication
- 3. John D. Kraus, "Antennas", Tata McGraw Hill publication
- 4. Annapurna Das and Sisir K Das, "*Microwave Engineering*", Tata McGraw Hill, New Delhi, Second Edition, 2009
- 5. Reinhold Ludwig and Pavel Bretchko, "RF Circuit Design", Pearson Education Asia.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course	Course Name	Teaching Scheme			Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ETC505	Integrated	04			04			04	
	Circuits								

Course	Course		Examination Scheme								
Code	Name		- -	Fheory Marks		Term	Practical	Oral	Total		
		In	ternal a	assessment	End Sem.	Work					
		Test Test Avg. of Test		Exam							
		1	2	1 and Test 2							
ETC505	Integrated	20	20	20	80				100		
	Circuits										

Course Pre-requisite:

- FEC105: Basic Electrical & Electronics Engineering
- ETC302: Analog Electronics-I
- ETC303: Digital Electronics
- ETC402: Analog Electronics-II

Course Objectives: To teach students

- Fundamentals of analog and digital integrated circuits.
- Design methodologies using practical integrated circuits.
- The application areas of integrated circuits.

Course Outcomes: After successful completion of the course student will be able to

- Understand the fundamentals and areas of applications for the Integrated Circuits.
- Analyze important types of integrated circuits of day-to-day requirements.
- Demonstrate the ability to design practical circuits that perform the desired operations.
- Understand the differences among theoretical, practical & simulated results in integrated circuits.
- Choose the appropriate integrated circuit modules to build a given application.

Module No.		Topics	Hrs.
1.		Review of Operational Amplifier	04
	1.1	Operational amplifier overview: parameters, open loop and closed loop	
		configurations	
2		Applications of Operational Amplifier	12
	2.1	Amplifiers: Current amplifier, difference amplifier, instrumentation amplifier,	
		and programmable gain amplifier	
	2.2	Converters: Current to voltage converters, voltage to current converters,	
		generalized impedance converter, voltage to frequency converter, frequency to	
		voltage converter, logarithmic converters and antilog converters	
	2.3	Active Filters: Second order active finite and infinite gain low pass, high pass, band pass and band reject filters	
	2.4	Sine Wave Oscillators: RC phase shift oscillator, Wien bridge oscillator, Quadrature oscillator	
3		Non-Linear Applications of Operational Amplifier	10
•	3.1	Comparators: Inverting comparator, non-inverting comparator, zero crossing	
		detector, window detector and level detector	
	3.2	Schmitt Triggers: Inverting Schmitt trigger, non-inverting Schmitt trigger, and	
		adjustable threshold levels	
	3.3	Waveform Generators: Square wave generator, triangular wave generator, and	
		duty cycle modulation	
	3.4	Precision Rectifiers: Half wave, full wave, and applications	
	3.5	Peak detectors, sample and hold circuits	
4		Special Purpose Integrated Circuits	08
	4.1	Functional block diagram, working, design and applications: Timer 555	
	4.2	Functional block diagram, working and applications: VCO 566, PLL 565,	
		multiplier 534, waveform generator XR 2206, power amplifier LM380	
5		Voltage Regulators	08
	5.1	Functional block diagram, working and design of three terminal fixed (78XX,	
		79XX series) and three terminal adjustable (LM 317, LM 337) voltage regulators.	
	5.2	Functional block diagram, working and design of general purpose 723 (LVLC,	
		LVHC, HVLC and HVHC) with current limit and current fold-back protection,	
		Switching regulator topologies, Functional block diagram and working of LT1070	
(monolithic switching regulator	10
6	61	Counters, Shift Registers and ALU (Logic Diagram and applications)	10
	6.1	MSI Counters: Ripple counters (7490 decade, 7492 modulus-12, 7493 4- hithinger) complete counters (74162 decade, 74162 4 hit binger, 74160 4 hit	
		bitbinary), synchronous counters (74162 decade, 74163 4-bit binary, 74169 4-bit up/down binary)	
	62	up/down binary) MSI Shift Registers: 74164 serial input parallel output, 74166 parallel input	
	6.2	serial output, 74191 serial input serial output, 74194 universal shift register	
	6.3	Arithmetic Logic Unit: 74181 ALU	
	0.3	Total	52

Recommended Books:

- 1. Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", Tata McGraw Hill, 3rd Edition
- 2. John F. Wakerly, "Digital Design Principles & Practices", Pearson Education, 3rd Edition
- 3. J. Millman and A. Grabel, "*Microelectronics*", Tata McGraw Hill, 2nd Edition.
- 4. D. Roy Choudhury and S. B. Jain, "*Linear Integrated Circuits*", New Age International Publishers, 4th Edition
- 5. David A. Bell, "*Operation Amplifiers and Linear Integrated Circuits*", Oxford University Press, Indian Edition
- 6. Ramakant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson Prentice Hall, 4th Edition
- 7. R. F. Coughlin and F. F. Driscoll, "Operation Amplifiers and Linear Integrated Circuits", Prentice Hall, 6th Edition
- 8. J. G. Graeme, G. E. Tobey and L. P. Huelsman, "Operational Amplifiers- Design & Applications", New York: McGraw-Hill, Burr-Brown Research Corporation

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course	Course Name	Те	aching Sch	eme	Credits Assigned					
Code		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
ETS506	Business		2 + 2			02		02		
	Communication									
	and Ethics									

Course	Course Name				Examinatio	n Schem	e		
Code			r	Fheory Ma	arks	Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1					
				and					
				Test 2					
ETS506	Business					50			50
	Communication								
	and Ethics								

Course Pre-requisite : FEC206 Communication Skills

Course Objective :

- To inculcate in students professional and ethical attitude, effective communication skills, teamwork, multidisciplinary approach and an ability to understand engineer's social responsibilities.
- To provide students with an academic environment where they will be aware of the excellence, leadership and lifelong learning needed for a successful professional career.
- To inculcate professional ethics and codes of professional practice and leadership.
- To prepare students for successful careers that meets the global Industrial and Corporate requirement' provide an environment for students to work on Multidisciplinary projects as part of different teams to enhance their team building capabilities like leadership, motivation, teamwork etc.

Expected Outcomes

After completion of this course students will be able to:

- Communicate effectively in both verbal and written form and demonstrate knowledge of professional and ethical responsibilities
- Participate and succeed in Campus placements and competitive examinations like GATE, CET.
- Possess entrepreneurial approach and ability for life-long learning.
- Have education necessary for understanding the impact of engineering solutions on Society and demonstrate awareness of contemporary issues.

Module	Unit	Topics	Hrs
No.	No.		
1.0	1.0	Report Writing	08
	1.1	Objectives of report writing	
	1.2	Language and style in a report	
	1.3	Types of reports	
	1.4	Formats of reports: Memo, letter, project and survey based	
2.0	2.0	Technical Proposals	02
	2.1	Objective of technical proposals	
	2.2	Parts of proposal	
3.0	3.0	Introduction to Interpersonal Skills	08
	3.1	Emotional Intelligence	
	3.2	Leadership	
	3.3	Team building	
	3.4	Assertiveness	
	3.5	Conflict Resolution	
	3.6	Negotiation Skills	
	3.7	Motivation	
	3.8	Time Management	
4.0	4.0	Meetings and Documentation	02
	4.1	Strategies for conducting effective meetings	
	4.2	Notice	
	4.3	Agenda	
	4.4	Minutes of the meeting	
5.0	5.0	Introduction to Corporate Ethics and etiquettes	02
	5.1	Business meeting etiquettes, interview etiquettes, professional	
		and work etiquettes, social skills	
	5.2	Greetings and art of conversation	
	5.3	Dressing and grooming	
	5.4	Dinning etiquette	
	5.5	Ethical codes of conduct in business and corporate activities	
		(Personal ethics, conflicting values, choosing a moral response,	
		the process of making ethical decisions)	
6.0	6.0	Employment Skills	06
	6.1	Cover letter	
	6.2	Resume	
	6.3	Group Discussion	
	6.4	Presentation Skills	
	6.5	Interview Skills	
		Total	28

Reference Books:

- 1. Fred Luthans, "Organisational Behavior", McGraw Hill, edition
- 2. Lesiker and Petit, "Report Writing for Business", McGraw Hill, edition
- 3. Huckin and Olsen, "Technical Writing and Professional Communication", McGraw Hill
- 4. Wallace and Masters, "*Personal Development for Life and Work*", Thomson Learning, 12th edition
- 5. Heta Murphy, "Effective Business Communication", McGraw Hill, edition
- 6. R.C Sharma and Krishna Mohan, "Business Correspondence and Report Writing"
- 7. B N Ghosh, "*Managing Soft Skills for Personality Development*", Tata McGraw Hill.Lehman, Dufrene, Sinha, "*BCOM*", Cengage Learning, 2nd edition
- 8. Bell . Smith,"Management Communication" Wiley India edition, 3rd edition.

Internal Assessment (IA):

There will be no IA written examination

End Semester Examination:

There will be no ESE written examination.

List of assignments:

Term work shall consist of assignments as listed below:

- 1. Report writing (Synopsis or the first draft of the Report)
- 2. Technical Proposal (Group activity, document of the proposal
- 3. Interpersonal Skills (Group activity and Role play)
- 4. Interpersonal Skills (Documentation in the form of soft copy or hard copy)
- 5. Meetings and Documentation (Notice, Agenda, Minutes of Mock Meetings)
- 6. Corporate ethics and etiquettes (case study, Role play)
- 7. Cover Letter and Resume Printout of the Power Point presentation

The distribution of marks for term work shall be as follows.

- 1. Assignments 20 marks
- 2. Project Report Presentation 15 marks
- 3. Group Discussion 10 marks
- 4. Attendance 5 marks

At least total 08 assignments, project report presentation and group discussion covering entire syllabus must be given during the batch wise practical. The assignments and project work should be students' centric and an attempt should be made to make assignments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every assignment / project / group discussion graded from time to time. The average of grades converted in to marks should be taken into account for term work assessment.

Course	Course Name	Те	aching Sch	eme		Credits Assigned			
Code		Theory	eory Practical Tutorial Theory TW/Practical Tutoria						
ETL501	Microcontrollers		02			01		01	
	and Applications								

Course	Course Name				Examinatio	n Schem	ie		
Code]	Theory Ma	rks	Term	Practical	Oral	Total
		Inter	rnal ass	sessment	End Sem.	Work	and		
		Test	Test	Ave. Of	Exam		Oral		
		1	2	Test 1					
				and					
				Test 2					
ETL501	Microcontrollers					25	25	-	50
	and								
	Applications								

At least ten experiments covering entire syllabus of ETC501 Microcontrollers and Applications should be set to have well predefined inference and conclusion. The experiments should be student's centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on overall performance of the student with every experiment graded. The grade must be converted to marks as per credit and grading system manual, and should be added and averaged. Based on above scheme grading and term work assessment should be done. Practical and oral examination will be based on entire syllabus.

Course	Course Name	Те	eaching Scher	ne		Credits Assigned				
Code		Theory	Practical	TutorialTheoryTW/PracticalTutorial01						
ETL502	Communication		02			01		01		
	Engineering									
	Laboratory I									

Course	Course Name		Examination Scheme							
Code				Theory Mark	s	Term	Practical	Oral	Total	
		Int	ernal as	ssessment	End Sem.	Work	and			
		Test	Test	Ave. Of	Exam		Oral			
		1	2	Test 1 and						
				Test 2						
ETL502	Communication					25	25	-	50	
	Engineering									
	Laboratory I									

At least ten experiments covering entire syllabus of ETC502: Analog Communication should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on over all performance of the student with every experiment graded. The grade must be converted to marks as per credit and grading system manual, and should be added and average. Based on above scheme grading and term work assessment should be done.

Practical and oral examination will be based on entire syllabus.

Course	Course Name	Tea	ching Sche	me	Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ETL503	Communication		02			01		01	
	Engineering								
	Laboratory II								

Course	Course Name		Examination Scheme							
Code			r	Fheory Mark	S	Term	Practical	Oral	Total	
		Int	ernal as	ssessment	End Sem.	Work	and Oral			
		Test Test Ave. Of			Exam					
		1	2	Test 1 and						
				Test 2						
ETL503	Communication					25	25	-	50	
	Engineering									
	Laboratory II									

At least ten experiments covering entire syllabus for ETC 504: RF Modeling and antenna and ETC 505: Integrated circuits should be set to have well predefined inference and conclusion. The experiments should be student's centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on overall performance of the student with every experiment graded. The grade must be converted to marks as per credit and grading system manual, and should be added and average. Based on above scheme grading and term work assessment should be done. Practical and oral examination will be based on entire syllabus.

Course Code	Course Name	Те	aching Sch	eme	Credits Assigned				
		Theory Practical Tutorial			Theory	TW/Practical	Tutorial	Total	
ETL504	Mini Project 1		02			01		01	

Course	Course Name		Examination Scheme								
Code				Theory Marks	Term	Practical	Total				
		Ir	nternal a	assessment	Work	and					
		Test Test Ave. Of Test Exam					Oral				
		1	2	1 and							
				Test 2							
ETL504	Mini Project 1					25	25	50			

The main intention of Mini Project is to make student enable to apply the knowledge and skills learned out of courses studied to solve/implement predefined practical problem. The students undergo various laboratory/tutorial/simulation laboratory/work shop courses in which they do experimentation based on the curriculum requirement. The Mini Project may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be on

- Learning additional skills
- Development of ability to define and design the problem and lead to its accomplishment with proper planning
- Learn the behavioral science by working in a group

The group may be maximum **four** (04) students. Each group will be assigned one faculty as a supervisor. The college should keep proper assessment record of progress of the project and at the end of the semester it should be assessed for awarding TW marks. The TW may be examined by approved internal faculty appointed by the head of the institute. The final examination will be based on demonstration in front of internal and external examiner. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained about the task completed.

The students may use this opportunity to learn different computational techniques as well as some model development. This they can achieve by making proper selection of Mini Projects.

Course Code	Course Name	Те	aching Sch	eme		Credits Ass	Credits Assigned			
		Theory	heory Practical Tutorial Theory TW/Practical Tutorial							
ETC601	Digital	04			04			04		
	Communication									

Course	Course Name				Examination	Scheme			
Code				Theory Mar	ks	Term	Practical	Oral	Total
		Inte	ernal as	sessment	End Sem.	Work			
		Test Test Ave. Of			Exam				
		1	1 2 Test 1						
			and						
				Test 2					
ETC601	Digital	20	20	20	80	-	-	-	100
	Communication								

Pre-requisite:

- ETC405 Signal and System,
- ETC502 Analog Communication,
- ETC503 Random Signal Analysis

Course Objective:

- Aim is to identify the functions of different components
- Learn about theoretical bounds on the rates of digital communication system and represent a digital signal using several modulation methods
- Draw signal space diagrams, compute spectra of modulated signals and apply redundancy for reliable communication.

Course Outcome: At the end of course, student will be able to :

- Understand the basics of information theory and coding techniques.
- Determine the minimum number of bits per symbol required to represent the source and the maximum rate at which a reliable communication can take place over the channel.
- Describe and determine the performance of different waveform techniques for the generation of digital representation of signals.
- Determine methods to mitigate inter symbol interference in baseband transmission system.
- Describe and determine the performance of different error control coding schemes for the reliable transmission of digital representation of signals and information over the channel.
- Understand various spreading techniques and determine bit error performance of various digital communication systems.

Module No.		Topics	Hrs
1.		Information theory and source coding	6
	1.1	Block diagram and sub-system description of a digital communication system, measure of information and properties, entropy and it's properties	
	1.2	Source Coding, Shannon's Source Coding Theorem, Shannon-Fano Source Coding, Huffman Source Coding	
	1.3	Differential Entropy, joint and conditional entropy, mutual information and channel capacity, channel coding theorem, channel capacity theorem	
2		Baseband Modulation and Transmission	6
	2.1	Discrete PAM signals and it's power spectra	
	2.2	Inter-symbol interference, Nyquist criterion for zero ISI, sinusoidal roll-off filtering, correlative coding, equalizers, and eye pattern	
3		Base band Detection	5
-	3.1	Orthogonality, representation of signals	-
	3.2	Maximum likelihood decoding	
	3.3	Correlation receiver, equivalence with matched filter	
4		Bandpass Modulation and Demodulation	12
	4.1	Bandpass digital transmitter and receiver model, digital modulation schemes	
	4.2	Generation, detection, signal space diagram, spectrum, bandwidth efficiency, and	
		probability of error analysis of:	
		Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK)Modulations, Binary	
		Phase Shift Keying (BPSK) Modulation, Quaternary Phase Shift Keying QPSK), M-	
		ary PSK Modulations, Quadrature Amplitude Modulation (QAM), Minimum Shift	
	1.2	Keying (MSK)	
	4.3	Comparison between bandwidth and bit rate, applications of digital modulation schemes	
5			10
5	5.1	Error Control Systems Types of error control, error control codes, linear block codes, vector spaces ,vector	10
	5.1	sub spaces, generator matrix, systematic linear block codes, parity check matrix, syndrome testing ,error correction, and decoder implementation	
	5.2	Cyclic codes: Algebraic structure of cyclic codes, binary cyclic code properties, encoding in systematic form, circuits for dividing polynomials, systematic encoding with shift register and error detection	
	5.3	Convolution Codes: Time domain and transform domain approach, graphical representation, code tree, trellis, state diagram, decoding methods, maximum likelihood decoding, and free distance	7
	5.4	Viterbi decoding, hard decision Viterbi decoding, decoding window, soft decision Viterbi decoding, code spectra, recursive systematic codes, code transfer function, and application areas	
6		Spread Spectrum	6
	6.1	Spread Spectrum (SS) concept, PN Sequences, Direct Sequence(DS), Frequency Hopping (FH), and Time Hopping	
	6.2	Comparison of Spread Spectrum Methods, SS Communication System, DSSS with Coherent BPSK, Processing Gain, Probability of Error of FHSS Transmitter and FHSS Receiver	
	•	Total	52

- 1. Sklar B, and Ray P. K., "*Digital Communication: Fundamentals and applications*," Pearson, Dorling Kindersley (India), Delhi, Second Edition, 2009.
- 2. Haykin Simon, "Digital Communication Systems," John Wiley and Sons, New Delhi, Forth Edition, 2014.
- 3. H. Taub, D. Schlling, and G. Saha, "*Principles of Communication Systems*," Tata Mc-Graw Hill, New Delhi, Third Edition, 2012.
- 4. Lathi B P, and Ding Z., "*Modern Digital and Analog Communication Systems*," Oxford University Press, Forth Edition, 2009.
- 5. T L Singal, "Analog and Digital Communication," Tata Mc-Graw Hill, New Delhi, First Edition, 2012.
- 6. P Ramakrishna Rao, "Digital Communication," Tata Mc-Graw Hill, New Delhi, First Edition, 2011.
- 7. M F Mesiya, "Contempory Communication systems", Mc-Graw Hill, Singapore, First Edition, 2013.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course	Course Name	Т	eaching Sch	eme		Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	ory TW/Practical Tutorial				
ETC602	Discrete Time	04			04			04		
	Signal									
	Processing									

Course	Course				Examination S	Scheme					
Code	Name			Theory Mar	ks	Term	Practical	Oral	Total		
		Internal assessment			End Sem.	Work					
		Test	Test	Ave. Of	Exam						
		1	2	Test 1 and							
				Test 2							
ETC602	Discrete	20	20	20	80	-	-	-	100		
	Time Signal										
	Processing										

Course Prerequisite: ETC 405: Signals and System

Course Objectives:

- To develop a thorough understanding of the central elements of discrete time signal processing theory and the ability to apply this theory to real-world signal processing applications.
- Use z-transforms and discrete time Fourier transforms to analyze a digital system.
- Understand the discrete Fourier transform (DFT), its applications and its implementation by FFT techniques.
- Design and understand finite & infinite impulse response filters for various applications.
- The course is a prerequisite course for further studying of other multimedia related courses, such as speech processing, image processing, audio and video data compression, pattern recognition, communication systems and so forth.

Course Outcomes: Student will able to

- Formulate engineering problems in terms of DSP tasks
- Apply engineering problem solving strategies to DSP problems
- Design and test signal processing algorithms for various applications
- Recover information from signals
- Design and simulate digital filters

Aodule No.		Topics	Hr
1		Transform Analysis of Linear Time Invariant System	04
	1.1	Review of Z transform and its properties, response to sinusoidal and complex	
		exponential signals, steady-state response to periodic input signals, response to	
		aperiodic input signals, relationships between the system function and the frequency	
		response function, computation of the frequency response function	
	1.2	LTI systems as frequency-selective filters like; low pass, high pass, band pass, notch,	
		comb, all-Pass filters, and digital resonators.	
	1.3	Invertibility of LTI systems, minimum-phase, maximum-phase, mixed-phase systems	
2		The Discrete Fourier Transform and Efficient Computation.	1
	2.1	Frequency domain sampling and reconstruction of discrete time signals, discrete	
		Fourier transform (DFT), DFT as a linear transformation, properties of the DFT,	
		relationship of the DFT to other transforms	
	2.2	Fast Fourier Transform: Radix-2 and split-radix fast Fourier transform (FFT)	
		algorithms and their applications	
	2.3	Quantization effects in the computation of the DFT	
3		Design of Digital filters and Implementation	1
	3.1	Design of Infinite Impulse Response (IIR) filters using impulse invariant method and	
		bilinear transformation method, Butterworth and Chebyshev filter approximation.	
	3.2	Concepts of Finite Impulse Response (FIR) filter, symmetric and anti symmetric FIR	
		filter, FIR filter design using window method and frequency sampling method.	
	3.3	Realization structures for IIR and FIR filters using direct form structures, cascade,	
		parallel structures, and lattice, ladder structure (only conceptual understanding)	
4		Multi rate Signal Processing	0
	4.1	Decimation by a factor D, interpolation by I, sampling rate conversion by a rational	-
		factor I/D	
	4.2	Polyphase filter structures, interchange of filers and down samplers/up samplers,	
		sampling rate conversion with cascade integrator comb filters, polyphase structures for	
		decimation and interpolation filters, structures for rational sampling rate conversion	
	4.3	Multistage implementation of sampling rate conversion.	
	4.4	Sampling rate conversion of band pass signals	
	4.5	Sampling rate conversion by an arbitrary factor – arbitrary re-sampling with polyphase	
		interpolators, narrow band filter structures.	
	4.6	Application of Multirate Signal Processing for design of phase shifters, interfacing of	
		digital systems with different sampling rates, implementation of narrowband low pass	
		filters, sub band coding of speech signals	
5		Analysis of Finite Word length effects	0
	5.1	Quantization process and errors, quantization of fixed-point numbers, quantization of	-
		floating-point numbers, analysis of coefficient quantization effects	
	5.2	A/D Conversion Noise Analysis, Analysis of Arithmetic Round-Off Errors and	
		dynamic range scaling	
6	t	Applications of Digital Signal processing:	0
	6.1	Dual – Tone multi frequency signal detection, spectral analysis of sinusoidal signals,	
		spectral analysis of non stationary signals, and spectral analysis of random signals	
	62		
	6.2	Musical sound processing, digital music synthesis, discrete time analytic signal	
	()	generation.	
	6.3	Trans-multiplexers, oversampling ADC and DAC and sparse antenna array design	

- 1. Alan V. Oppenheim and Ronald Schafer, "Discrete Time Signal Processing", Pearson Education
- 2. J. Proakis, D. G. Manolakis, and D. Sharma, "Digital Signal Processing: Principles, Algorithms and Applications", Pearson Education.
- 3. P.P. Vaidyanathan, "Multirate Systems and Filter Banks", Pearson.
- 4. Robert Schilling and Sandra Harris, "Fundamentals of Digital Signal Processing using MATLAB", Cengage Learning.
- 5. Sanjit K.Mitra, "Digital Signal Processing", McGrawHill education

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Teaching Scheme	Credits Assigned							
		Theory	Practical	Tutorial	Theory	TW/	Tutorial	Total		
						Practical				
ETC603	Computer	04			04			04		
	Communication									
	Networks									

Course	Course Name				Examination	Scheme			
Code			Theory Marks				Practical	Oral	Total
		Int	ernal a	ssessment	End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
ETC603	Computer	20	20	20	80	-	-	-	100
	Communication								
	Networks								

Course pre requisite: ETC 502 Analog Communication

Course Objective:

- To introduce analysis and design of computer and communication networks.
- To understand the network layered architecture and the protocol stack.

Course Outcomes:

Upon completion of the subject, students will be able to:

- Assemble the components of a PC and install one or more network operating systems resulting in a functioning
- Design a small or medium sized computer network including media types, end devices, and interconnecting devices that meets a customer's specific needs.
- Perform basic configurations on routers and Ethernet switches.
- Demonstrate knowledge of programming for network communications
- Learn to simulate computer networks and analyze the simulation results
- Troubleshoot connectivity problems in a host occurring at multiple layers of the OSI model
- Develop knowledge and skills necessary to gain employment as computer network engineer and network administrator.

Module No.		Topics	Hrs.
1.		Network Architectures, Protocol layers, and their Service Models:	04
	1.1	OSI-RM model and TCP/IP protocol	
2		Principles of Network Applications:	10
	2.1	Application layer protocols such as HTTP, FTP, and SMTP.	
	2.2	Peer-to-Peer File Sharing Protocols and Architectures	
	2.3	ISPs and Domain name systems, Socket API and network socket programming	
3	3.1	Reliable and Unreliable Transport-layer protocols:	10
	3.2	TCP and UDP, Port numbers, Multiplexing and de-multiplexing	
	3.3	Flow control and congestion control. fairness delay, jitter, and loss in packet- switched networks	
	3.4	Bandwidth, throughput, and quality-of-service	
4	4.1	Network layer Services and Protocols	10
	4.2	Switching fabric, routing and forwarding, queues and buffering	
	4.3	Virtual-circuit and datagram networks, internet protocol. IPv4 and IPv6 tunneling	
	4.4	Link State and Distance Vector algorithms, Routing in the Internet RIP, OSPF, and BGP	
	4.5	Broadcast and multicast, handling mobility	
5		Data link layer Services and Protocols:	10
	5.1	Link-layer and its services, Ethernet, hubs, bridges, and switches	
	5.2	Link-layer addressing, ATM and MPLS	
	5.3	Local area networks and IEEE 802.11 wireless LANs, multiple-access protocols.	
		Random access, efficiency of pure and slotted ALOHA, CSMA, CSMA/CD, and	
		CSMA/CA	
6		Introduction to Physical-layer Services and Systems	08
	6.1	Introduction to physical media, Coax, fiber, twisted pair, DSL, HFC, WiMax,	
		cellular, satellite, and telephone networks, bit transmission, frequency division	
		multiplexing. time division multiplexing	
		Total	52

- 1. Andrew Tanenbaum, "Computer Networks", PHI New Dehli,
- 2. Natalia Olifer and Victor Olifer, "Computer Networks", Wiley India, New Delhi
- 3. J. F. Kurose and K. W. Ross, "*Computer Networking: A Top-Down Approach*", Pearson Publication, 5th Edition, March 2009
- 4. L.Garcia et al, "Communication Networks", McGraw Hill Publication, 2nd Edition
- 5. B. Forouzan, "Data Communication and Networking", McGraw Hill Publication, 5th edition.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3 Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Course Code	Course	Teaching Scheme			Credits Assigned				
	Name	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ETC 604	Television	04			04			04	
	Engineering								

Course	Course				Examination	Scheme			
Code	Name			Theory Mar	ks	Term	Practical	Oral	Total
		Int	ernal as	ssessment	End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
ETC	Television	20	20	20	80	-	-	-	100
604	Engineering								

Pre requisite : ETC 502 Analog Communication

Course Objective:

- To introduce the basics of picture transmission and reception.
- To become well conversant with new development in video engineering.
- To introduce most latest and revolutionary ideas in the field of digital TV, HDTV, WDTV.

Course outcome: The students will be able to

- Describe and differentiate working principles of latest digital TV, HDTV, WDTV.
- Understand, use and working principles of latest display like LCD, LED, Plasma and large plat panel monitors

Module		Topics	Hrs
No.			
1		Fundamentals of Analog T V system	10
	1.1	Transmitter and receiver- block diagram approach, interlaced scanning, composite	
		video signal, VSB transmission and reception (CCIR-B standards)	
	1.2	Camera tubes: basic principle, Vidicon and Image orthicon	
2		Color T V	
	2.1	Compatibility considerations, Color theory, chromaticity diagram, generation of color	10
		TV signals, luminance signal, chrominance signal, frequency interleaving process,	
		color subcarrier frequency.	
	2.2	NTSC system- transmitter and receiver, PAL system- transmitter and receiver	
-		Fundamental Concept of Digital Video	
3	3.1	Digitization, pixel array, scanning notation, viewing distance and angle, aspect ratio,	12
		frame rate and refresh rate.	
	3.2	Raster scanning, scan line waveform, interlace, scanning standards.	
	3.3	Sync structure, data rate, linearity, bandwidth and data rate, resolution, luma, color	
	-	difference coding, chroma sub sampling	_
	3.4	Component digital video, composite video	
4		Advanced TV systems	6
	4.1	Digital video and audio signals	
	4.2	MAC signal, D2-MAC/packet signal, MAC decoding and interfacing, advantages of	
	4.2	MAC signal	-
-	4.3	Direct-to-home TV(DTH)	0
5	5 1	High definition televisions	8
	5.1	High definition TV systems, HDTV standards and compatibility, resolution and working.	
	5.2		-
	5.2	Wide dimensions high definition TV Standards of wide dimensions HDTV	-
6	5.4	MUSE system	6
0	6.1	Displays Dringiple working advantages and disadvantages of Plasma LED LCD	6
	0.1	Principle, working, advantages and disadvantages of Plasma, LED,LCD Total	52

- 1. Gulati R.R, "Monochrome and Color Television," Wiley Eastern Limited publication.
- 2. R.G.Gupta, "Television and Video Engineering", Tata Mc Graw Hill publication.
- 3. Dhake A.M, "Television and Video Engineering", Tata McGraw Hill publication.
- 4. Keith Jack, "Video Demystified", 4e, , Elsevier
- 5. Charles Poynton, "San Francisco, Digital video and HDTV, Algorithms And Interfaces," Morgan Kaufmann publishers, 2003.
- 6. Stan Prentiss, "High Definition TV", second edition, , Tata McGraw Hill publication

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4: Remaining questions will be selected from all the modules.

Course Code	Course	Те	aching Sch	eme	Credits Assigned				
	Name	Theory	Fheory Practical T		Theory	TW/Practical	Tutorial	Total	
ETC 605	Operating	04			04			04	
	System								

Course	Course				Examination	Scheme			
Code	Name			Theory Mar	ks	Term	Practical	Oral	Total
		Int	ernal as	ssessment	End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
ETC	Operating	20	20	20	80	-	-	-	100
605	System								

Course Pre-requisite: Basic concepts of computer systems

Course Objectives:

١

- To introduce operating system as a resource manager, its evolutions and fundamentals.
- To help student understand concept of process and different process (linear and concurrent) Scheduling policies.
- To help student familiar with memory, file and I/O management policies.

Course Outcomes: On completing this course Student will able to:

- Understand the role of an operating system, its function and issues.
- Compare between different algorithms used for management and scheduling of processes, Memory and input-output operation.
- Appreciate the role of various productivity enhancing tools.

Module No.		Topics	Hrs
1		Fundamental of Operating System(OS)	06
	1.1	Definition, objectives, functions, evolution, services, types, and different views of OS	1
	1.2	Operating System as a resource manager, system calls, and shell	1
	1.3	Monolithic systems, layered systems, client server model, monolithic kernel and microkernel	
2		Process Management and Memory Management	10
	2.1	Process, process creation, process control block, process states, process state transition diagram	
	2.2	Scheduling queues and schedulers, preemptive and non- preemptive scheduling algorithms, types of threads, multithreading models	
	2.3	Race condition, critical section, mutual exclusion, semaphores, monitors	1
	2.4	Multiprogramming with fixed and variable partitions, memory allocation strategies	1
	2.5	Logical and physical address space, paging and segmentation	1
	2.6	Concept, performance of demand paging, page replacement algorithms.	1
	2.7	Deadlock Problem, deadlock characterization, deadlock prevention and deadlock avoidance deadlock detection and recovery	
3		File Management and Input Output Management	1
	3.1	File Naming, File Structure, File Types, File Access, File Attributes, File Operations, Memory Mapped Files, Implementing Files, contiguous allocation, linked list allocation, indexed allocations, Inode	
	3.2	Single level directory system, Two level directory system, Hierarchical Directory System	1
	3.3	Principles of Input/output H/W: I/O Devices, Device Controllers, Direct Memory Access.	1
	3.4	Principles of Input/output S/W: Goals Of I/O S/W, Interrupt Handler, Device Driver, Device Independent I/O Software	-
	3.5	Disks : RAID levels, Disks Arm Scheduling Algorithms	1
	3.6	Management of free blocks.	1
4		Unix Operating System	
	4.1	History of UNIX, UNIX Goals, Unix Shell, interfaces to Unix, UNIX utility programs	
	4.2	Traditional UNIX Kernel, Modern UNIX Systems	0
	4.3	Unix process management: Concept, Scheduling in Unix	0
	4.4	Unix Memory management: Paging, Page replacement strategies	
	4.5	Unix file management: I-node, File allocation, I/O management	1
	4.6	Unix Security measures	1
5		Linux Operating System	1
	5.1	History, Linux Processes and Thread management	1
	5.2	Scheduling in Linux, Linux System calls]
	5.3	Memory management: Virtual memory, Buddy Algorithm, Page replacement policy	
	5.4	Linux File System	
	5.5	I/O management: Disk Scheduling	1
	5.6	Advantages of Linux and Unix over Windows	1
6		Real Time Operating System(RTOS)	1
	6.1	Introduction, Characteristics of real-time operating systems	1
	6.2	Real Time task Scheduling, Modeling Timing constraints, Table-driven scheduling	1
	6.3	Cyclic schedulers	1
	6.4	Earliest Deadline First (EDF) scheduling	1
	6.5	Rate Monotonic Algorithm(RMA)	1
		Total	5

- 1. Tanenbaum, "Modern Operating Systems", IIIrd Edition, PHI
- 2. Silberschatz A., Galvin P., and Gagne G, "Operating Systems Concepts", VIIIth Edition Wiley.
- 3. William Stallings, "Operating System-Internal & Design Principles", VIth Edition, , Pearson
- 4. Rajib Mall, "Real-Time Systems: Theory and Practice," Pearson, 2008.
- 5. Maurice J. Bach, "The Design of Unix Operating System", Prentine Hall
- 6. Achyut S. Godbole, "Operating Systems", 2nd edition, Tata McGraw Hill
- 7. Richard Blum and Christine Bresnahan, "Linux Command Line & Shell Scripting", 2nd edition, Wiley

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Course	Course	Те	aching Sch	eme	Credits Assigned				
Code	Name	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ETC606	VLSI Design	04			04			04	

Course	Course Name				Examination Scheme							
Code				Theory Mar	ks	Term	Practical	Oral	Total			
		Int	ternal a	ssessment	End Sem.	Work						
		Test	Test	Avg. of	Exam							
		1	2	Test 1 and								
				Test 2								
ETC606	VLSI Design	20	20	20	80				100			

Course Pre-requisite:

- ETC303: Digital Electronics
- ETC302: Analog Electronics-I
- ETC402: Analog Electronics-II
- ETC505: Integrated Circuits

Course Objectives:

- To teach fundamentals of VLSI circuit design and implementation using circuit simulators and layout editors.
- To highlight the circuit design issues in the context of VLSI technology.

Course Outcomes: After successful completion of the course student will be able to

- Demonstrate a clear understanding of CMOS fabrication flow and technology scaling.
- Design MOSFET based logic circuit
- Draw layout of a given logic circuit
- Realize logic circuits with different design styles
- Demonstrate an understanding of working principle of operation of different types of memories
- Demonstrate an understanding of working principles of clocking, power reduction and distribution

Module No.		Topics	Hrs.
1		MOSFET Fabrication and Scaling	08
	1.1	Fabrication: Fabrication process flow for NMOS and CMOS, CMOS Latch-up	
	1.2	MOSFET Scaling: Types of scaling, short channel effects, Level 1 and Level 2 MOSFET Models	
	1.3	Layout: Lambda based design rules, MOSFET capacitances	
2		MOSFET Inverters	10
	2.1	Circuit Analysis: Static and dynamic analysis (Noise, propagation delay and power dissipation) of resistive load and CMOS inverter. Comparison of all types of MOS inverters. Design of CMOS inverters and its layout.	
	2.2	Logic Circuit Design: Analysis and design of 2-I/P NAND and NOR using equivalent CMOS inverter.	
3		MOS Circuit Design Styles	10
	3.1	Design Styles: Static CMOS, Pass Transistor Logic, Transmission Gate, Pseudo NMOS, Domino, NORA, Zipper, C ² MOS	
	3.2	Circuit Realization: SR Latch, JK FF, D FF, 1 Bit Shift Register, MUX, Decoder using above design styles and their layouts	
4		Semiconductor Memories	08
	4.1	SRAM: ROM Array, SRAM (operation, design strategy, leakage currents, read/write circuits), DRAM (Operation 3T, 1T, operation modes, leakage currents, refresh operation, Input-Output circuits), Flash (mechanism, NOR flash, NAND flash), layout of SRAM and DRAM	
	4.2	Peripheral Circuits: Sense Amplifier, Decoder	
5		Data Path Design	08
	5.1	Adder: Bit adder circuits, Ripple carry adder, CLA adder	
	5.2	Multipliers and shifter: Partial-product generation, partial-product accumulation, final addition, Barrel Shifter	
6		VLSI Clocking and System design	08
	6.1	Clocking: CMOS clocking styles, Clock generation, stabilization and distribution	
	6.2	Low Power CMOS Circuits: Various components of power dissipation in CMOS, Limits on low power design, low power design through voltage scaling.	
	6.3	IO pads and Power Distribution: ESD protection, Input circuits, Output circuits, Simultaneous switching noise, power distribution scheme	
	6.4	Interconnect: Interconnect delay model, interconnect scaling and crosstalk	
		Total	52

- 1. Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw Hill, 3rd Edition, 2012.
- 2. Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, "*Digital Integrated Circuits: A Design Perspective*", Pearson Education, 2nd Edition.
- 3. John P. Uyemura, "Introduction to VLSI Circuits and Systems", Wiley, Student Edition, 2013.
- 4. Neil H. E. Weste, David Harris and Ayan Banerjee, "*CMOS VLSI Design: A Circuits and Systems Perspective*", Pearson Education, 3rd Edition.
- 5. R. Jacob Baker, "CMOS Circuit Design, Layout and Simulation", Wiley, 2nd Edition, 2013

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Course Code	Course Name	Те	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ETL601	Discrete Time		02			01		01	
	Signal								
	Processing								

Course	Course Name				Examination S	Scheme			
Code				Theory Mar	ks	Term	Practical	Oral	Total
		Int	ernal as	ssessment	End Sem.	Work	and		
		Test	Test	Ave. Of	Exam		Oral		
		1	2	Test 1 and					
				Test 2					
ETL601	Discrete Time					25	25	-	50
	Signal								
	Processing								

At least ten experiments covering entire syllabus of ETC 602:Discrete Time Signal Processing on should be set to have well predefined inference and conclusion. The experiments should be student's centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on overall performance of the student with every experiment graded. The grade must be converted to marks as per credit and grading system manual, and should be added and average. Base on above scheme grading and term work assessment should be done.

Practical and oral examination will be based on entire syllabus.

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ETL602	Communication		02			01		01	
	Engineering Laboratory III								

Course	Course Name				Examination	Scheme				
Code				Theory Ma	rks	Term	Practical	Oral	Total	
		Inte	ernal as	sessment	End Sem.	Work	and			
		Test	Test	Ave. Of	Exam		Oral			
		1 2 Test 1								
				and Test						
				2						
ETL602	Communication					25	25	-	50	
	Engineering									
	Laboratory III									

At least ten experiments covering entire syllabus for ETC 601: Digital Communication and ETC 603 Computer Communication and Networks should be set to have well predefined inference and conclusion. The experiments should be student's centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on overall performance of the student with every experiment graded. The grade must be converted to marks as per credit and grading system manual, and should be added and average. Base on above scheme grading and term work assessment should be done. Practical and oral examination will be based on entire syllabus of ETC 601 and ETC 603

Course	Course Name	Те	aching Sch	eme	Credits Assigned					
Code		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
ETL604	Communication		02			01		01		
	Engineering									
	Laboratory IV									

Course	Course Name				Examination Scheme					
Code				Theory Ma	rks	Term	Practical	Oral	Total	
		Inte	ernal as	sessment	End Sem.	Work	and			
		Test	Test	Ave. Of	Exam		Oral			
		1	2	Test 1						
				and Test						
				2						
ETL604	Communication					25	25	-	50	
	Engineering									
	Laboratory -IV									

At least six experiments covering entire syllabus for ETC 606:VLSI Design and minimum four experiments for ETC 604: Television Engineering. should be set to have well predefined inference and conclusion. The experiments should be student's centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on overall performance of the student with every experiment graded. The grade must be converted to marks as per credit and grading system manual, and should be added and average. Base on above scheme grading and term work assessment should be done. Practical and oral examination will be based on entire syllabus for ETC 606 and ETC 604.

Course Code	Course Name	Те	aching Sch	eme	Credits Assigned				
		Theory	Theory Practical Tutorial			TW/Practical	Tutorial	Total	
ETL605	Mini Project II		02			01		01	

Course	Course Name				Examination Sche	me		
Code				Theory Ma	Term	Practical/	Total	
		Int	ernal as	sessment	End Sem. Exam	Work	Oral	
		Test	Test	Ave. Of				
		1	2	Test 1 and				
				Test 2				
ETL605	Mini Project II					25	25	50

The main intention of Mini Project is to make student enable to apply the knowledge and skills learned out of courses studied to solve/implement predefined practical problem. The students undergo various laboratory/tutorial/simulation laboratory/work shop courses in which they do experimentation based on the curriculum requirement. The mini Project may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be on

- Learning additional skills
- Development of ability to define and design the problem and lead to its accomplishment with proper planning.
- Learn the behavioral science by working in a group

The group may be maximum **four** (04) students. Each group will be assigned one faculty as a supervisor. The college should keep proper assessment record of progress of the project and at the end of the semester it should be assessed for awarding TW marks. The TW may be examined by approved internal faculty appointed by the head of the institute. The final examination will be based on demonstration in front of internal and external examiner. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained about the task completed.

The topic of Mini Project I and II may be different and / or may be advancement in the same topic. The students may use this opportunity to learn different computational techniques as well as some model development. This they can achieve by making proper selection of Mini Projects.

UNIVERSITY OF MUMBAI

<u>Bachelor of Engineering</u> <u>Electronics and Telecommunication</u> <u>Engineering</u>

Final Year Engineering (Sem. VII and VIII), Revised course (REV- 2012) effective from Academic Year 2014 -15

Under FACULTY OF TECHNOLOGY

(As per Semester Based Credit and Grading System)

From Dean's Desk:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's) and course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education. Semester based Credit and grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 3-2 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

Credit and grading based system was implemented for First Year of Engineering from the academic year 2012-2013. Subsequently this system will be carried forward for Second Year Engineering in the academic year 2013-2014, for Third Year and Final Year Engineering in the academic years 2014-2015 and 2015-2016 respectively.

Dr. S. K. Ukarande Dean, Faculty of Technology, Member - Management Council, Senate, Academic Council University of Mumbai, Mumbai

Preamble:

In the process of change in the curriculum there is a limited scope to have major changes in the fundamental subjects which are mainly part of second year of engineering. The exposure to the latest technology and tools used all over the world is given by properly selecting subjects and their hierarchy in pre-final and final year. Thus this syllabus is made to groom the undergraduate students best suited and competent in all respect with best possible efforts put in by the experts in framing detail contents of individual subjects.

The engineering education in India is expanding in manifolds and the main challenge is the quality education. All the stakeholders are very much concerned about it.

The institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this process is to measure the outcomes of the program. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of graduation.

So the curriculum must be constantly refined and updated to ensure that the defined objectives and outcomes are achieved. Students must be encouraged to comment on the objectives and outcomes and the role played by the individual courses in achieving them. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

I, as Chairman, Board of Studies in Electronics and Telecommunication Engineering University of Mumbai, happy to state here that, heads of the department and senior faculty from various institute took timely and valuable initiative to frame Program Educational Objectives as listed below.

- 1. To provide students with a strong foundation in the mathematical, scientific and engineering fundamentals necessary to formulate, solve and analyze engineering problems and to prepare them for graduate studies.
- 2. To prepare students to demonstrate an ability to identify, formulate and solve electronics and telecommunication engineering problems.
- 3. To prepare students to demonstrate ability to design electrical and electronics systems and conduct experiments, analyze and interpret data.
- 4. To prepare students to demonstrate for successful career in industry to meet needs of Indian and multi-national companies.
- 5. To develop the ability among students to synthesize data and technical concepts from applications to product design.
- 6. To provide opportunity for students to work as part of teams on multidisciplinary projects.
- 7. To promote awareness among students for the life-long learning and to introduce them to professional ethics and codes of professional practice.

These are the suggested and expected main objectives and individual affiliated institute may add further in the list. In addition to Program Educational Objectives, for each course of undergraduate program, objectives and expected outcomes from learner's point of view are also included in the curriculum to support the philosophy of outcome based education. I believe strongly that small step taken in right direction will definitely help in providing quality education to the stake holders. The subjects offered to undergraduate students in final year are at par to the requirement of industry. The students are also made competent to appear for various competitive examination conducted in India and abroad. The subjects offered are at enough level to prepare a base of the students to understand and learn latest state of technology. The students are trained in such a way that they become versatile in hardware and software simulation. Some subjects offered upgrades them in the field of information and technology which is a need of today's' era.

At the end I must outset extend my gratitude to all experts who contributed to make curriculum competent at par with latest technological development in the field of electronics and telecommunication engineering.

Dr. Udhav Bhosle Chairman, Board of Studies in Electronics and Telecommunication Engineering

Semester	VII
----------	-----

Course	Course Name	Teach	ing Scheme	e (Hrs.)		Credits A	ssigned	
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETC701	Image and Video	04			04			04
	Processing							
ETC702	Mobile	04			04			04
	Communication							
ETC703	Optical	04		-	04		-	04
	Communication and							
	Networks							
ETC704	Microwave and	04			04			04
	Radar Engineering							
ETE70X	Elective	04			04			04
ETL701	Image and Video		02			01		01
	Processing							
	Laboratory							
ETL702	Advanced		02			01		01
	communication							
	Engineering.							
	Laboratory I							
ETL703	Advanced		02			01		01
	communication							
	Engineering.							
	Laboratory II							
ETEL70X	Elective		02			01		01
ETP701	Project (Stage I)		*			03		03
Total		20	08		20	07		27

Course Code (ETE70X)	Sem. VII Elective
ETE 701	Data Compression and Encryption
ETE 702	Statistical Signal Processing
ETE 703	Neural Network and Fuzzy Logic
ETE 704	Analog and Mixed Signal VLSI

• Work load of learner in Semester VII is equivalent to 6 hours /week

Course	Course Name			Examination Scheme							
Code			Theo	ry Marks	Term	Practical	Total				
		Inte	Internal assessment			Work	and Oral				
		Test	Test	Ave. of	Sem.						
		1	2	Test 1 &	Exam						
				Test 2							
ETC701	Image and Video	20	20	20	80			100			
	Processing										
ETC702	Mobile	20	20	20	80			100			
	Communication										
ETC703	Optical	20	20	20	80	-		100			
	Communication and										
	Networks										
ETC704	ETC704 Microwave and Radar		20	20	80			100			
	Engineering										
ETE70X	Elective	20	20	20	80			100			
ETL701	Image and Video					25	25	50			
	Processing Laboratory										
ETL702	Advanced					25	25	50			
	communication										
	Engineering.										
	Laboratory I										
ETL703	Advanced					25	25	50			
	Communication										
	Engineering.										
	Laboratory II										
ETEL70X	Elective					25	25	50			
ETP701	Project (Stage I)					<mark>25</mark>	<mark>25</mark>	<mark>50</mark>			
Total		100	100	100	400	125	125	750			

Semester VII

Semester VIII

Course	Course Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned					
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
ETC801	Wireless Networks	04			04			04		
ETC802	Satellite communication and Networks	04		-	04		-	04		
ETC803	Internet and Voice Communication	04			04			04		
ETE80X	Elective	04			04			04		
ETL801	Wireless Networks Laboratory		02			01		01		
ETL802	Satellite communication and Networks Laboratory		02			01		01		
ETL803	Internet and Voice Communication Laboratory		02			01		01		
ETEL80X	Elective Laboratory		02			01		01		
ETP801	Project (Stage II)		**			06		06		
Total		16	08		16	10		26		

Course Code (ETE 80X)	Sem. VIII Elective		
ETE 801	Speech Processing		
ETE 802 Telecom Network Management			
ETE 803	Microwave Integrated Circuits		
ETE 804	Ultra Wideband Communication		

** Work load of learner in Semester VIII is equivalent to 12 hours /week.

Semester	VIII
----------	------

Course	Course Name	Examination Scheme								
Code			Theor	y Marks		Term	Practical	Oral	Total	
		Internal assessment End				Work	and Oral			
		Test 1	Test	Ave. of	Sem.					
			2	Test 1	Exam					
				& Test						
				2						
ETC801	Wireless Networks	20	20	20	80				100	
ETC802	Satellite communication and Networks	20	20	20	80				100	
ETC803	Internet and Voice Communication	20	20	20	80				100	
ETE80X	Elective	20	20	20	80				100	
ETL801	Wireless Networks Laboratory					25		25	50	
ETL802	Satellite communication and Networks Laboratory					25		25	50	
ETL803	Internet and Voice Communication Laboratory					25		25	50	
ETEL80X	Elective Laboratory					25		25	50	
ETP801	Project (Stage II)					<mark>50</mark>		<mark>50</mark>	<mark>100</mark>	
Total		80	80	80	320	150		150	700	

Course Code	Course Name	Tea	ching Sche	me	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETC701	Image and Video Processing	04			04			04	

Course	Course	Examination Scheme								
Code	Name		The	ory Marks		Term	Practical	Oral	Total	
		In	ternal asse	ssment	End Sem.	Work				
		Test 1	Test 2	Ave. Of	Ave. Of Exam					
				Test 1 and						
				Test 2						
ETC701	Image and	20	20	20	80	-	-	-	100	
	Video									
	Processing									

Course pre-requisite:

- ETC 405: Signals and Systems
- ETC 602: Discrete Time Signal Processing

Course Objectives:

- To cover the fundamentals and mathematical models in digital image and video processing.
- To develop time and frequency domain techniques for image enhancement.
- To expose the students to current technologies and issues in image and video processing.
- To develop image and video processing applications in practice.

Course outcomes: Students will be able to

- Understand theory and models in Image and Video Processing.
- Interpret and analyze 2D signals in frequency domain through image transforms.
- Apply quantitative models of image and video processing for various engineering applications.
- Develop innovative design for practical applications in various fields.

1			
		Image Fundamentals	04
	1.1	Image acquisition, sampling and quantization, image resolution, basic	
		relationship between pixels, color images, RGB, HSI and other models	<u> </u>
2		Two Dimensional Transforms	06
	2.1	Discrete Fourier Transform, Discrete Cosine Transform, KL Transform, and	
		Discrete Wavelet Transform	
3		Image Enhancement	
	3.1	Spatial Domain	08
		Point Processing: Digital Negative, contrast stretching, thresholding, gray	
		level slicing, bit plane slicing, log transform and power law transform.	
		Neighborhood Processing: Averaging filters, order statistics filters, high pass	
		filters and high boost filters	
	3.2	Frequency Domain: DFT for filtering, Ideal, Gaussian and Butterworth filters	
		for smoothening and sharpening, and Homomorphic filters	
-	3.3	Histogram Modeling: Histogram equalization and histogram specification	
4		Image Segmentation and Morphology	07
	4.1	Point, line and edge detection, edge linking using Hough transform and graph	
		theoretic approach, thresholding, and region based segmentation.	
	4.2	Dilation, erosion, opening, closing, hit or miss transform, thinning and	
		thickening, and boundary extraction on binary images	
5		Image Restoration:	07
F	5.1	Degradation model, noise models, estimation of degradation function by	
		modeling, restoration using Weiner filters and Inverse filters	
6		Video Formation, Perception and Representation	08
F	6.1	Digital Video Sampling, Video Frame classifications, I, P and B frames,	
		Notation, ITU-RBT 601Digital Video formats, Digital video quality measure.	
	6.2	Video Capture and display: Principle of colour video camera, video camera,	
		digital video	
	6.3	Sampling of video Signals: Required sampling rates, sampling in two	
		dimensions and three dimensions, progressive virus interlaced scans	
7		Two Dimensional Motion Estimation	12
F	7.1	Optical Flow: 2-D motion Vs optical flow, optical flow equations, motion	
		representation, motion estimation criteria, optimization method.	
=	7.2	Pixel based motion estimation: Regularization using motion smoothing	
		constraints, using multipoint neighborhood.	
F	7.3	Block Matching Algorithms: Exhaustive block matching algorithms, phase	
	-	correlation method, Binary feature matching.	
F	7.4	Multi resolution Motion Estimation: General formulation, Hierarchical	
		blocks matching Algorithms.	
		Total	52

- 1. Gonzales and Woods, "Digital Image Processing", Pearson Education, India, Third Edition,
- 2. Anil K.Jain, "Fundamentals of Image Processing", Prentice Hall of India, First Edition, 1989.
- 3. Murat Tekalp, "Digital Video Processing", Pearson, 2010.
- 4. John W. Woods, "Multidimensional Signal, Image and Video Processing", Academic Press 2012
- 5. J.R.Ohm, "Multimedia Communication Technology", Springer Publication.
- 6. A.I.Bovik, "Handbook on Image and Video Processing", Academic Press.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered for final internal assessment.

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.

Course Code	Course Name	Те	aching Sch	eme	Credits Assigned				
		Theory	Theory Practical Tutorial Theory Practical Tutorial T						
ETC702	Mobile	04			04			04	
	communication								

Course	Course Name				Examination S	Scheme			
Code				Theory Mar	ks	Term	Practical	Oral	Total
		Inte	ernal as	ssessment	End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
ETC702	Mobile	20	20	20	80	-	-	-	100
	communication								

Prerequisites:

- ETC 601 Digital Communication
- ETC 603 Computer Communication and Networks

Course Objective:

- To study the concept of Mobile radio propagation, cellular system design.
- To understand mobile technologies like GSM and CDMA.
- To know the mobile communication evolution of 2G, 3G and 3 GPP in detail.
- To have overview of immerging technologies for 4 G standards.

Course Outcomes: Students will be able to:

- Understand GSM, CDMA concepts and architecture, frame structure, system capacity, services provided.
- Study of evolution of mobile communication generations 2G, 2.5G, 3G with their characteristics and limitations.
- Understand emerging technologies required for fourth generation mobile systems such as SDR, MIMO etc.
- Understand different indoor and outdoor propagation models related to losses and different types of fading.

No.		Topics	Hrs
1.0		Fundamentals of Mobile Communication	10
•	1.1	Introduction to wireless communication	
•	1.2	Frequency Division Multiple access, Time Division Multiple access, Spread	
		Spectrum Multiple access, Space Division Multiple access, and OFDM	
	1.3	Frequency reuse, channel assignment strategies, handoff strategies,	
		interference and system capacity, trunking and grade of service, improving the	
		capacity of cellular systems. and related design problems	
2.0		2G Technologies	13
	2.1	GSM Network architecture, signaling protocol architecture, identifiers,	
		channels, introduction frame structure, speech coder RPE-LTP,	
		authentication and security, call procedure, handoff procedure, services and	
		features	
	2.2	GSM evolution in GPRS and EDGE: Architecture and services offered	
	2.3	IS-95 A& B(CDMA-1): Frequency and channel specifications of forward and	
	2.3	reverse CDMA channel, packet and frame formats, mobility and radio	
		resource management	
3.0		3G Technology	09
5.0	3.1	IMT-2000/UMTS: Network architecture, air Interface specification, forward	09
	3.1	and reverse channels in W-CDMA and CDMA 2000, spreading and	
		modulation.	
	3.2	Cell search and synchronization, establishing a connection, hand off and	
	3.2	power control in 3G system	
4.0		3GPP LTE	08
	4.1	Introduction and system overview	00
·	4.2	Frequency bands and spectrum ,network structure, and protocol structure	
	4.3	Frame slots and symbols, modulation, coding, multiple antenna techniques	
	4.4	Logical and Physical Channels: Mapping of data on to logical sub-channels	
		physical layer procedures, establishing a connection, retransmission and	
		reliability, power control.	
5.0		Emerging Technologies for 4G	06
	5.1	4G Introduction and vision	
	5.2	Multi antenna Technologies: MIMO; software defined radio	
	5.3	Adaptive multiple antenna techniques, radio resource management, QOS	
		requirements	
	5.4	Overview of 4G research initiatives and developments.	
6.0		Mobile Radio Propagation	06
	6.1	Study of indoor and outdoor propagation models	
	6.2	Small scale fading and multi-path Small-scale multi-path propagation,	
		parameter of multi-path channels, types of small scale fading, Raleigh and	
		Ricean distribution,	
		Total	52

- 1. Theodore S. Rappaport, "Wireless Communications", Prentice Hall of India, PTR publication
- 2. Andreas Molisch, "Wireless Communications", Wiley, Student second Edition.
- 3. Vijay Garg, "Wireless Network Evolution 2G-3G", Pearson Education.
- 4. Young Kyun Kim and Ramjee Prasad, "4 G Roadmap and Emerging Communication Technologies ", Artech house.:
- 5. Raj Pandya, "Mobile And Personal Communications Systems And Services", Prentice hall.
- 6. Singhal, "Wireless Communication", TMH
- 7. C.Y Lee, "Mobile Communication", Wiley

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.

Course Code	Course Name	Teaching Scheme			Credits Assigned					
		Theory	Practical	Tutorial	Theory Practical Tutorial To					
ETC703	Optical	04			04			04		
	Communication									
	and Networks									

Course	Course Name				Examination	n Scheme					
Code				Theory Mark	S	Term	Practical	Oral	Total		
		Internal assessment			End Sem.	Work					
		Test	Test	Ave. Of	Exam						
		1	2	Test 1 and							
				Test 2							
ETC703	Optical	20	20	20	80	-	-	-	100		
	Communication										
	and Networks										

Pre requisites:

- ETC404 Wave Theory and Propagation
- ETC502 Analog Communication
- ETC601 Digital Communication.

Course Objective: To teach students

- Optical fiber structures wave guide, fabrication and signal degradation in fiber.
- The characteristics of optical sources and detectors.
- Link budged and optical networks, design and management.
- Study the multiplexing schemes.

Course Outcome: This course enables the students to:

- Apply the fundamental principles of optics and light wave to design optical fiber communication systems.
- Identify structures, functions, materials, and working principle of optical fibers, light sources, couplers, detectors, and multiplexers.
- Design optical fiber communication links using appropriate optical fibers, light sources, couplers, detectors, and multiplexers.
- Explore concepts of designing and operating principles of modern optical communication systems and networks.
- Apply the knowledge developed in-class to contemporary optical fiber communication research and industrial areas.

Module No.		Topics	Hrs.
1.		Optical Fiber Communication Technology	10
	1.1	Block diagram, advantages, loss and bandwidth window, ray theory transmission,	
		total internal reflection, acceptance angle, numerical aperture, and skew rays	
	1.2	EM waves, modes in planer guide, phase and group velocities, types of fibers according to refractive index profile and mode transmission.	
	1.3	Fiber material, fiber cables and fiber fabrication, fiber joints, fiber connectors, splices.	
2		Transmission Characteristic of Optical Fiber	08
	2.1	Attenuation, absorption, linear and nonlinear scattering losses, bending losses, modal dispersion, waveguide dispersion, dispersion and pulse broadening, dispersion shifted and dispersion flattened fibers, and non linear effects	
	2.2	Measurements of attenuation, dispersion and OTDR	
3		Optical Communication Systems	08
	3.1	Working principle and characteristics of sources (LED, LASER), and optical amplifiers	
	3.2	Working principle and characteristics of detectors (PIN, APD), noise analysis in detectors, coherent and non-coherent detection, receiver structure, bit error rate of optical receivers, and receiver performance.	
	3.3	Point to point links system considerations, link power budget, and rise time budget	
4		Optical Network System Components and Optical Networks	10
	4.1	Couplers, isolators, circulators, multiplexers, filters, fiber gratings, Fabry Perot filters, a rrayed waveguide grating, switches and wavelength converters	
	4.2	SONET and SDH standards, architecture of optical transport networks (OTNs), network topologies, protection schemes in SONET/SDH, and wavelength routed architectures.	
	4.3	Operational principle of WDM, WDM network elements and Architectures, Introduction to DWDM, Solitons.	
5		Packet Switching and Access Networks	08
	5.1	OTDM, multiplexing and de-multiplexing, synchronization and broadcast OTDM networks.	
	5.2	Network architecture overview, OTDN networks, optical access networks, and future	
		access networks.	
6		Network Design and Management	08
	6.1	Transmission system model, power penalty-transmitter, receiver optical amplifiers, crosstalk, dispersion, wavelength stabilization.	
	6.2	Network management functions, configuration management, performance management, fault management, optical safety, and service interface	
		Total	52

- 1. John M. Senior, "*Optical Fiber Communication*", Prentice Hall of India Publication, Chicago, 3rd Edition, 2013
- 2. Gred Keiser, "Optical Fiber Communication", Mc-Graw Hill Publication, Singapore, 4th Edition, 2012
- 3. G Agrwal, "Fiber optic communication Systems", John Wiley and Sons, 3rd Edition, New York 2014
- 4. Rajiv Ramaswami and Kumar N. Sivarajan, "*Optical Networks: A Practical Perespective*", Elsevier Publication Elsevier India Pvt.ltd, 3rd Edition, 2010
- 5. P.E.Green, "Optical Networks", Prentice Hall, 1994
- 6. Biswanath Mukherjee, "Optical Communication Networks", McGraw-Hill, 1997.
- 7. Le Nguyen Binh, "Optical Fiber Communication System: Theory and Practice with MATLAB and Simulink", CRC Press, 2010

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Те	aching Sch	eme	Credits Assigned				
		Theory	Theory Practical Tutorial Theory Practical Tutorial					Total	
ETC704	Microwave	04			04			04	
	and Radar								
	Engineering								

Course	Course Name				Examination S	Scheme					
Code				Theory Marks	5	Term	Practical	Oral	Total		
		Internal assessment			End Sem.	Work					
		Test	Test	Ave. Of	Exam						
		1	2	Test 1 and							
				Test 2							
ETC704	Microwave	20	20	20	80	-	-	-	100		
	and Radar										
	Engineering										

Pre requisite :

- ETC 404 Wave Theory and Propagation
- ETC 504 RF Modeling and Antenna

Course Objective: To teach the students

- Radio-frequency spectrum space, microwave communication.
- Microwave principles, working of microwave devices.
- RADAR and their applications.

Course Outcome: After Completing this course student will be able to

- Analyze the microwave passive circuit components and design the tunning and matching networks.
- Identify the state of art in microwave tubes and semiconductors and their uses in real life.
- Apply the microwave devices and RADAR for industrial and scientific purposes

Module		Topics	Hrs.
No. 1.		Warran and Mission Commence to	10
1.	11	Waveguides and Microwave Components Frequency bands and characteristics of microwaves	10
•	<u>1.1</u> 1.2		
-	1.2	Rectangular and circular waveguides, mode analysis	
	1.5	Resonators, reentrant cavities, scattering parameters, tees, hybrid ring, directional couplers, phase shifters, terminations attenuators, ferrite devices	
		such as isolators, gyrators, and circulators.	
2		Impedance Matching and Tuning	08
4	2.1	Lumped element matching	00
	2.2	Single stub tuning, double stub tuning, triple stub tuning	
	2.3	Quarter wave transformer	
3	2.0	Generation and Amplification of Microwaves	10
U .	3.1	Two Cavity Klystron and Reflex Klystron	10
-	3.2	Helix Travelling Wave Tube and Backward Wave Oscillator	
-	3.3	Cross Field Amplifier, Cylindrical Magnetron, and Gyrotrons	
4		Semiconductor Microwave Devices (construction, working, equivalent circuit	10
-		and performance characteristics)	10
•	4.1	Varactor, PIN, Tunnel, Point Contact, Schottky Barrier, Gunn, IMPATT,	
		TRAPATT, and BARITT.	
	4.2	BJT, Hetro junction BJT, MESFET, and HEMT	
-	4.3	Parametric Amplifiers	
5		RADAR	08
	5.1	Basics of RADAR and RADAR range equation	
	5.2	Types of RADAR: Pulsed, Continuous wave and FMCW, Doppler, MTI, and	
		Phased Array	
	5.3	Types of displays and Clutter	
	5.4	Tracking RADAR: Monopulse, Conical, Sequentiallobing	
6		Microwave Applications	06
	6.1	Microwave heating and bio-medical applications	
	6.2	Remote sensing RADAR, MSTRADAR, radiometer, instrumentation landing	
		system, and RADAR based navigation	
		Total	52

- 1. David M Pozar, "*Microwave Engineering*", John Wieley & Sons,Inc. Hobokenh,New Jersey, Fourth Edition, 2012.
- 2. Samuel YLiao, "Microwave Devices and Circuits", Pearson Education, Third Edition
- 3. Merill Skolnik, "Introduction to RADAR Systems", TataMcgraw Hill, Third Edition
- 4. Annapurna Das and Sisir K Das, "*Microwave Engineering*", Tata McGraw Hill,New Delhi, Second Edition, 2009
- 5. K. T. Matthew, "Microwave Engineering", Wieleyindia, ,2011

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Teaching Scheme			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETE701	Data	04			04			04	
	Compression								
	and								
	Encryption								

Course	Course				Examination S	cheme			
Code	Name			Theory Mar	·ks	Term	Practical	Oral	Total
		Inte	ernal as	sessment	End Sem.	Work			
		Test Test Ave. Of		Ave. Of	Exam				
		1	2	Test 1					
				and Test					
				2					
ETE701	Data	20	20	20	80	-	-	-	100
	Compression								
	and								
	Encryption								

Pre requisite :

- ETC 503 Random Signal Analysis
- ETC 601 Digital Communication
- ETC 603 Computer Communication and Networks

Course Objective: To teach the students

- Lossless and Lossy compression techniques for different types of data.
- Understand data encryption techniques
- Network security and ethical hacking.

Course Outcome : Student will able to

- Implement text, audio and video compression techniques.
- Understand symmetric and asymmetric key cryptography schemes.
- Understand network security and ethical hacking.

Module No.		Topics	Hrs.
1.		Data Compression	08
	1.1	Compression Techniques: Loss less compression, Lossy compression, measure of performance, modeling and coding, different types of models, and coding	
	1.0	techniques	
	1.2	Text Compression : Minimum variance Huffman coding, extended Huffman coding, Adaptive Huffman coding. Arithmetic coding, Dictionary coding techniques ,LZ 77, LZ 78, LZW	
2		Audio Compression	04
	2.1	High quality digital audio, frequency and temporal masking, lossy sound compression, μ -law and A-law companding, and MP3 audio standard	
3		Image and Video Compression	12
	3.1	PCM, DPCM JPEG, JPEG – LS, and JPEG 2000 standards	
	3.2	Intra frame coding, motion estimation and compensation, introduction to MPEG - 2 H-264 encoder and decoder	
4		Data Security	12
	4.1	Security goals, cryptography, stenography cryptographic attacks, services and mechanics.	
	4.2	Integer arithmetic, modular arithmetic, and linear congruence	
	4.3	Substitution cipher, transposition cipher, stream and block cipher, and arithmetic modes for block ciphers	
	4.4	Data encryption standard, double DES, triple DES, attacks on DES, AES, key distribution center.	
5		Number Theory and Asymmetric Key Cryptography	12
	5.1	Primes, factorization, Fermat's little theorem, Euler's theorem, and extended Euclidean algorithm	
	5.2	RSA, attacks on RSA, Diffie Hellman key exchange, key management, and basics of elliptical curve cryptography	
	5.3	Message integrity, message authentication, MAC, hash function, H MAC, and digital signature algorithm	
6		System Security	
	6.1	Malware, Intruders, Intrusion detection system, firewall design, antivirus techniques, digital Immune systems, biometric authentication, and ethical hacking.	04
		Total	52

- 1. Khalid Sayood, "Introduction to Data Compression", Morgan Kaufmann, 2000
- 2. David Saloman, "Data Compression: The complete reference", Springer publication
- 3. Behrous Forouzen, "Cryptography and Network Security", Tata Mc Graw –Hill Education 2011
- 4. Berard Menezes, "Network Security and Cryptography", learning publication Cengage
- 5. William Stallings, "Cryptography and Network Security", Pearson Education Asia Publication, 5th edition

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETE702	Statistical	04			04			04
	Signal							
	Processing							

Course	Course			F	xamination S	cheme			
Code	Name		<u>_</u>	Fheory Marks	Term	Practical	Oral	Total	
		I	nternal a	ssessment	End Sem.	Work			
		TestTest 2Ave. Of Test		Exam					
		1		1 and Test 2					
ETE702	Statistical	20	20	20	80	-	-	-	100
	Signal								
	Processing								

Course Prerequisite:

- ETC 405 Signals and Systems,
- ETC503 Random Signal Analysis

Course Objective:

- To enable the student to understand the basic principles of random signal processing.
- To study spectral detection and estimation methods used in communication system design and their applications.

Course Outcome Students will able to:

- Design System for estimation, spectral estimation
- To perform wave formation analysis of the system
- Understand role of statistical fundamentals in real world applications.

Module No.		Topics	Hrs.							
1.		Review of Signals and Systems	6							
	1.1	Review of stochastic Processes								
	1.2	Gauss-Markow models, representation of stochastic process, likelihood and sufficiency								
2		Detection Theory	8							
	2.1	One way, two way ANOVA table, hypothesis testing, decision criteria								
	2.2	Multiple measurements, multiple-hypothesis testing, and composite								
	2.3	Chi-square testing, asymptotic error rate of LRT for simple hypothesis testing, CFAR detection, sequential detection and Wald's test.								
3		Detection of Signals in Noise	8							
		Detection of known signals in white noise								
	3.2	Correlation receiver and detection of known signals in colored noise								
	3.3 Detection of known signals in noise and maximum SNR criterion									
	3.4		10							
4		Estimation Theory	10							
	4.1									
	4.2	5								
	4.3	Properties of estimators, linear mean-square estimation, and								
5		reproducing densities Estimation of Waveforms	10							
5	51	Linear MMSE Estimation of Waveforms	10							
		The Wiener Filter for estimation of stationary processes								
	5.3									
	5.4	Relation between the Kalman and Wiener Filters, nonlinear estimation,								
		and nonparametric detection	10							
6	(1	Applications	10							
	6.1	Spread spectrum communications								
	6.2									
	6.3	Parameter estimation in RADAR systems								
	6.4	Dynamic Target Tracking, pattern classification and system identification								
		Total	52							

- 1. M.D. Srinath, P.K. Rajasekaran, and R. Viswanathan, "Introduction to Statistical Signal Processing with Application", Pearson Education
- 2. Robert M. Gray and Lee D. Davisson, "An Introduction to Statistical Signal *Processing*", Pearson Education
- 3. Steven Kay, "Fundamentals of Statistical Signal Processing Volume-I: Estimation Theory", Prentice hall publication
- 4. Steven Kay, "Fundamentals of Statistical Signal Processing Volume-II: Detection Theory", Prentice hall publication
- 5. Steven Kay, "Fundamentals of Statistical Signal Processing Volume-III: Practical Algorithm Development", Prentice hall publication

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.

Course Code	Course Name	Те	eaching Sch	eme	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETE703	Neural Networks and Fuzzy Logic	04			04			04

Course	Course				Examination S	Scheme			
Code	Name			Theory Mar	ks	Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work			
	Test Test Ave. Of Exam								
		1	2	Test 1 and					
				Test 2					
ETE703	Neural	20	20	20	80	-	-	-	100
	Networks								
	and Fuzzy								
	Logic								

Prerequisites: FEC 101 Applied Mathematics I

Course Objective: To teach students

- Concepts and understanding of artificial neural networks
- Fuzzy logic basic theory and algorithm formulation
- To solve real world problems.

Course Outcome: Students will get:

- Knowledge about different neural networks, their architecture and training algorithm
- Concept of Fuzzy logic, Fuzzy Sets, fuzzy rules and fuzzy reasoning
- Exposure to the applicability of neural networks and fuzzy logic

Module No.		Topics	Hrs.
1.		Introduction to Neural Networks and its Basic Concepts:	08
	1.1	Biological neurons and McCulloch and Pitts models of neuron	
	1.2	Types of activation functions	
	1.3	Neural networks architectures	
	1.4	Linearly separable and linearly non-separable systems and their examples	
	1.5	Features and advantages of neural networks over statistical techniques	
	1.6	Knowledge representation, learning process, error-correction learning,	
		concepts of supervised learning, and unsupervised learning	
2		Supervised Learning Neural Networks:	07
	2.1	Single layer perception and multilayer perceptron neural networks, their	
		architecture	
	2.2	Error back propagation algorithm, generalized delta rule, learning factors,	
		step learning	
	2.3	Momentum learning	
	2.4	Concept of training, testing and cross-validation data sets for design and	
		validation of the networks	
3		Unsupervised Learning Neural Networks:	09
	3.1	Competitive earning networks, kohonen self-organizing networks	
	3.2	K-means and LMS algorithms	
	3.3	RBF neural network, its structure and Hybrid training algorithm for RBF	
		neural networks	
	3.4	Comparison of RBF and MLP networks Learning	
	3.5		
	3.6	Hebbian learning, Hopfield networks.	
4		Applications of Neural Networks:	06
	4.1	Pattern classification	
	4.2	Handwritten character recognition	
	4.3		
	4.4	Image compression and decompression	
5		Fuzzy logic	14
	5.1	Basic Fuzzy logic theory, sets and their properties	
	5.2	Operations on fuzzy sets	
	5.3	Fuzzy relation and operations on fuzzy relations and extension principle	
	5.4	Fuzzy membership functions and linguistic variables	
	5.5	Fuzzy rules and fuzzy reasoning	
	5.6	Fuzzification and defuzzification and their methods	
	5.7	Fuzzy inference systems, Mamdani Fuzzy models, and Fuzzy knowledge	
		based controllers	
6		Applications of Fuzzy Logic and Fuzzy Systems:	08
v	6.1	Fuzzy pattern recognition	00
	6.2	Fuzzy image processing	
	6.3	Simple applications of Fuzzy knowledge based controllers like washing	
	0.5	machines, traffic regulations, and lift control	
		Total	52

- 1. S. Rajsekaran and G. A. Vijaylakshmi Pai, "Neural Networks, Fuzzy Logic, and Genetic Algorithms", PHI
- 2. Simon Haykin, "Neural Network- A Comprehensive Foundation", Pearson Education
- 3. Thimothy J. Ross, "*Fuzzy Logic with Engineering Applications*", Wiley India Publications
- 4. Laurence Fausett, "Fundamentals of Neural Networks", Pearson Education
- 5. S. N. Sivanandam, S. Sumathi, and S. N. Deepa, "*Introduction to Neural Network Using MATLAB*", Tata McGraw-Hill Publications
- 6. Bart Kosko, "Neural networks and Fuzzy Systems", Pearson Education

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject Code	Course Name	Те	eaching Sche	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETE704	CMOS Analog and Mixed Signal VLSI Design	04	02		04	01		05	

Course	Course				Examination Sc	heme			
Code	Name			Theory Mai	:ks	Term	Practical	Oral	Total
		Int	ernal as	ssessment	End Sem. Exam	Work			
		Test	Test	Avg. of					
		1	2	Test 1 and					
				Test 2					
ETE704	CMOS	20	20	20	80				100
	Analog and								
	Mixed								
	Signal VLSI								
	Design								

Course Pre-requisite:

- ETC302: Analog Electronics I
- ETC303. Digital Electronics
- ETC402: Analog Electronics II
- ETC 505: Integrated Circuits
- ETC 606 :VLSI Design

Course Objectives: To teach the students

- Importance of CMOS and Mixed Signal VLSI design in the field of Electronics and Telecommunication.
- Underlying methodologies for analysis and design of fundamental CMOS Analog and Mixed signal Circuits like Current and Voltage references, Single stage Amplifiers, Operational Amplifiers, Data Converters.
- The issues associated with high performance Mixed Signal VLSI Circuits.

Course Outcomes: After successful completion of the course student will be able to

- Differentiate between Analog, Digital and Mixed Signal CMOS Integrated Circuits.
- Analyze and design current sources and voltage references for given specifications.
- Analyze and design single stage MOS Amplifiers.
- Analyze and design Operational Amplifiers.
- Analyze and design data converter circuits.

Module No.		Topics	Hrs.
1		Fundamental Analog Building Blocks	08
	1.1	MOS Transistor as sampling switch, active resistances, current source and sinks, current mirror and current amplifiers	
	1.2	Voltage and current references, band gap voltage reference, Beta-Multipler referenced self-biasing	
2		Single Stage MOS Amplifiers	14
	2.1	Common-source stage (with resistive load, diode connected load, current-source load, triode load, source degeneration), source follower, common-gate stage, cascode stage, folded cascade stage, simulation of CMOS amplifiers using SPICE	
	2.2	Single-ended operation, differential operation, basic differential pair, large-signal and small-signal behavior, common-mode response, differential pair with MOS loads, simulation of differential amplifiers using SPICE	
	2.3	Noise characteristics in the frequency and time domains, thermal noise, shot noise, flicker noise, popcorn noise, noise models of IC components, representation of noise in circuits, noise in single-stage amplifiers (CS, CD and CG stages), noise in differential pairs, noise bandwidth, noise figure, noise temperature.	
3		MOS Operational Amplifiers Desing	08
	3.1	Trans-conductance operational amplifier (OTA), two stage CMOS operational amplifier	
	3.2	CMOS operational amplifiers compensation, cascade operational amplifier and folded cascade	
4		Non-Linear & Dynamic Analog Circuits	08
	4.1	Switched capacitor amplifiers (SC), switched capacitor integrators, first and second order switched capacitor circuits.	
	4.2	Basic CMOS comparator design, adaptive biasing, analog multipliers	
5		Data Converter Fundamentals	06
	5.1	Analog versus digital discrete time signals, converting analog signals to data signals, sample and hold characteristics	
	5.2	DAC specifications, ADC specifications, mixed-signal layout issues	
6		Data Converter Architectures	08
	6.1	DAC architectures, digital input code, resistors string, R-2R ladder networks, current steering, charge scaling DACs, Cyclic DAC, pipeline DAC,	
	6.2	ADC architectures, flash, 2-step flash ADC, pipeline ADC, integrating ADC, and	
		successive approximation ADC	
		Total	52

- 1. B. Razavi, "Design of Analog CMOS Integrated Circuits", first edition, McGraw Hill,2001.
- 2. Harry W. Li and David E Boyce, "CMOS Circuit Design, Layout, Stimulation", PHI Edn, 2005
- 3. P.E.Allen and D R Holberg, "CMOS Analog Circuit Design", second edition, Oxford University Press, 2002.
- 4. Gray, Meyer, Lewis and Hurst "Analysis and design of Analog Integrated Circuits", 4th Edition Willey International, 2002

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
ETL701	Image and Video Processing		02			01		01		

Course	Course				Examination Sch	cheme				
Code	Name			Theory Mar	·ks	Term	Practical	Total		
		Internal assessment			End Sem. Exam	Work	and Oral			
		Test	Test	Ave. Of						
		1	2	Test 1 and						
				Test 2						
ETL701	Image and					25	25	50		
	Video									
	Processing									

At least ten experiments covering entire syllabus for ETC 701: Image and Video Processing be set to have predefined inference and conclusion. Simulation based experiments are also encouraged. An attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded. The average of grades converted in to marks should be taken into account for term work assessment.

Practical and Oral examination will be based on entire syllabus.

	Course Name	Te	aching Sch	eme		Credits A	ssigned		
Course Code									
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETL702	Advanced		02			01		01	
	Communication								
	Engineering								
	Laboratory I								

Course	Course Name				Examination	Scheme		
Code				Theory Mark	S	Term	Practical	Total
		Int	Internal assessment End Sem.				And	
		Test	Test	Ave. Of	Exam		Oral	
		1	2	Test 1 and				
				Test 2				
ETL702	Advanced					25	25	50
	Communication							
	Engineering							
	Laboratory I							

At least ten experiments covering entire syllabus for ETC 702: Mobile Communication be set to have predefined inference and conclusion. Simulation based experiments are also encouraged. An attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded. The average of grades converted in to marks should be taken into account for term work assessment.

Practical and Oral examination will be based on entire syllabus.

Course Code	Course Name	Те	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETL703	Advanced		02			01		01	
	Communication								
	Engineering								
	Laboratory II								

Course	Course Name				Examination Scher	ne		
Code				Theory Mai	rks	Term	Practical	Total
		Int	ernal as	ssessment	End Sem. Exam	Work	and Oral	
		Test	Test	Ave. Of				
		1	2	Test 1 and				
				Test 2				
ETL703	Advanced					25	25	50
	Communication							
	Engineering							
	Laboratory II							

At least ten experiments covering entire syllabus for ETC 703: Optical Communication and Network and ETC 704: Microwave and Radar Engineering be set to have predefined inference and conclusion. Simulation based experiments are also encouraged. An attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. The average of grades converted in to marks should be taken into account for term work assessment.

Practical and Oral examination will be based on entire syllabus of ETC 703 and ETC 704

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETL70X	Elective		02			01		01

Course	Course		Examination Scheme							
Code	Name			Theory Ma	Term	Practical	Total			
		Int	ernal as	ssessment	Work	and Oral				
		Test	Test	Ave. Of						
		1	2	Test 1 and						
				Test 2						
ETL70X	Elective					25	25	50		

At least ten experiments covering entire syllabus for respective elective subject be set to have predefined inference and conclusion. Simulation based experiments are also encouraged. An attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded. The average of grades converted in to marks should be taken into account for term work assessment.

Practical and Oral examination will be based on entire syllabus.

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned			
		Theory Practical Tutorial			Theory	Practical	Tutorial	Total
ETP701	Project (Stage I)		02			01		01

Course	Course Name		Examination Scheme							
Code				Theory Ma	rks	Term	Practical	Oral	Total	
		Inte	ernal as	sessment	End Sem.	Work				
		Test Test Ave. Of Exam								
		1	2	Test 1						
				and Test						
				2						
ETP701	Project					25	-	25	50	
	(Stage I)									

The final year students have already under gone project assignment in their pre-final year in Mini Project I and II. In final year group of maximum **four** students will be completing a comprehensive project work based on the courses studied. The project work may be internally assigned or may be externally assigned by the research institutes, industry etc. Each group will be assigned one faculty as a supervisor. This project work in final year may be extension of the Mini Project work done in pre-final year.

The main intention of Project work is to enable students to apply the knowledge and skills learned out of courses studied to solve/implement predefined practical problem. The Project work may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be

- Learning additional skills
- Development of ability to define, design, analysis and implementation of the problem and lead to its accomplishment with proper planning
- Learn the behavioral science by working in a group
- The project area may be selected in which the student intend to do further education and/or may be either intend to have employment or self employment
- The topic of project should be different and / or may be advancement in the same topic of Mini Project
- The students may use this opportunity to learn different computational techniques as well as some model development. This they can achieve by making proper selection of Project work.

The college should keep proper assessment record of the progress of project and at the end of the semester it should be assessed for awarding TW marks. The TW should be examined by approved internal faculty appointed by the head of the institute on the basis of following:

- Scope and objective of the project work.
- Extensive Literature survey.
- Progress of the work (Continuous assessment)
- Report in prescribed University format.

An approved external examiner and internal examiner appointed by the head of the institute together will assess during oral examination. The oral examination is a presentation by the group members on the project along with demonstration of the work done. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained.

Subject Code	Course Name	Teaching Scheme		Credits Assigned								
		Theory	Practical	Practical Tutorial Theory TW/ Tutorial Total Practical								
ETC801	Wireless Networks	04			04			04				

Course	Course				heme				
Code	Name			Theory Mai	`ks	Term	Practical	Oral	Total
		Int	ernal as	ssessment	End Sem. Exam	Work			
		Test Test Avg. of							
		1	2	Test 1 and					
				Test 2					
ETC801	Wireless	20	20	20	80				100
	Networks								

Course Pre requisites :

- ETC 603 Computer Communication and Networks
- ETC 702 Mobile Communication

Course Objectives:

- Introduction to planning and design of wireless networks
- Introduction to HSPA systems
- To study emerging technologies like Bluetooth, zigbee, Wimax
- Understanding the wireless sensor network architecture and the protocol stack and WSN applications.

Course Outcomes: The students will be able to:

- Describe the phases of planning and design of mobile wireless networks
- List and compare personal area network (PAN) technologies such as Zigbee, Bluetooth etc
- Students will details of sensor network architecture, traffic related protocols, transmission technology etc
- Understand middleware protocol and network management issues of sensor networks

Module No.		Topics	Hrs.
1		Overview of Cellular Systems	08
	1.1	Mobile telephony, introduction to GSM.	
	1.2	Universal mobile telecommunication system	
	1.3	Introduction to HSPA, Advanced Antenna Systems for HSPA + and LTE	
2		Planning and Design of Wide-Area Wireless Networks	12
	2.1	Basics of indoor RF planning	
	2.2	Three phases of wireless network design	
	2.3	Indoor coverage from the macro layer	
	2.4	Link budgets for GSM, CDMA, CDMA2000, HSDPA systems, indoor UMTS/HSPA	
		challenge, common UMTS rollout mistake	
3		Emerging Wireless Technologies	10
	3.1	Bluetooth: concepts of Pico net, scatter net etc., protocol stack, link types, security,	
		network connection establishments, usage models, etc.	
	3.2	ZigBee: components, architecture, network topologies, protocol stack etc.	
	3.3	UWB and RFID: technical requirements, components and characteristics, applications	•
	3.4	WiMAX: 802.16 based protocol architecture, physical layer, fixed and mobile	
		WiMAX	
4		Overview of Wireless Sensor Network	12
	4.1	Background of sensor network technology, sensor network architectural elements,	
		historical survey of sensor networks	
	4.2	Applications of wireless sensor network, range of applications, examples of category 1	
		and 2 WSN Applications	
	4.3	Technologies for wireless sensor network, sensor node technology, hardware and software, sensor taxonomy	
	4.4	Wireless network, operating environment, wireless network trends, transmission	
	4.4	technology	
	15		
	4.5	Medium access control protocols, routing protocols, transport control protocols	10
6	(1	Middleware for Sensor Networks & Network Management	10
	6.1	Middleware principles	
	6.2	Middleware architecture, existing middleware	-
	6.3	Network management, requirements	-
	6.4	Network management models, design issues	
		Total	52

- 1. Indoor Radio Planning: A Practical Guide for GSM, DCS, UMTS, HSPA and LTE, 2nd Edition Morten Tolstrup ISBN: 978-0-470-71070-8 480 July 2011 -Wiley
- 2. Vijay K. Garg, "Wireless Communication and Networking", Morgan -Kaufmann Series in Networking—Elsevier
- 3. Kazem Sohraby, Daniel Minoli, and Taieb Znati, "Wireless Sensor Networks: Technology, Protocols, and Applications", Wiley Student Edition
- 4. Feng Zhao and Leonidas Guibas, "Wireless Sensor Networks, An Information Processin Approach",--Morgan Kaufmann
- 5. Holger and Andreas Willig, "Protocols and Architectures for WSN", Wiley student edition

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETC 802	Satellite	04			04			04
	Communication and Network							
	and Network							

Course	Course Name	Examination Scheme									
Code			Th	eory Marks		Term	Practical	Oral	Total		
		Int	ternal ass	sessment	End	Work					
		Test 1	Test 2	Ave. Of	Sem.						
				Test 1 and	Exam						
				Test 2							
ETC 802	Satellite	20	20	20	80	-	-	-	100		
	Communication										
	and Network										

Pre-requisites:

- ETC 502: Analog communication
- ETC 601: Digital Communication

Course Objective:

- To provide an in-depth understanding of different concepts used in a satellite communication system.
- To explain the tools necessary for the calculation of basic parameters in a satellite communication system.
- To get knowledge of every aspects of satellite communication like orbital mechanics, launching techniques, satellite link design, earth station technology and different access system towards a satellite.

Course Outcome: The Students will be able to

- Explain the basics of satellite communication
- Explain and analyzes link budget of satellite signal for proper communication
- Use the system for the benefit of society
- Use the different application of satellite communication

Module No.		Topics	Hrs.
1.		Overview of Satellite Systems, Orbits and Launching	10
	1.1	Frequency allocation for satellite services, system design consideration, satellite services-]
		VSAT, global positioning satellite system, maritime satellite services, gateways	
	1.2	Polar orbiting satellites, Kepler's First, second and third law, orbital elements, apogee,	
		perigee heights, orbital perturbations, effects of a non-spherical earth, atmospheric drag	
	1.3	Sub-satellite Point, predicting satellite position, antenna look angels, polar mount antenna,	
		limits of visibility, near geostationary orbits, earth eclipse of satellite, sun transit outage	
	1.4	Selection of launching site, launch window, zero and non-zero degree latitude launching,	
		sea launch, launch vehicles; satellite launch vehicle (SLV), augmented satellite launch	
		vehicle (ASLV), polar SLV, geostationary satellite launch vehicle (GSLV)	
2		Space Segment	8
	2.1		
		keeping, thermal control, TT and C subsystem, transponders, wideband receiver, input de-	
		multiplexer, power amplifier, antenna subsystem	_
	2.2	Equipment reliability and space qualification	
3		Satellite Links	12
	3.1	Isotropic radiated power, transmission losses, free-space transmission, feeder losses,	
		antenna misalignment losses, fixed atmospheric and ionospheric losses, link power budget	4
	3.2	System noise, antenna noise, amplifier noise temperature, amplifiers in cascade, noise	
		factor, noise temperature of absorptive networks, overall system noise temperature, carrier	
		to noise ratio	-
	3.3		
	2.4	Downlink: Output back off, satellite TWTA output	-
	3.4	Effects of rain, uplink rain-fade margin, downlink rain-fade margin, combined uplink and	
4		downlink C/N ratio, inter-modulation noise Earth Station.	04
4	4.1	Design considerations, receive-only home TV systems, outdoor-indoor unit for analog	04
	4.1	(FM) TV, master antenna TV system, transmit-receive earth stations	
	4.2		-
5	T .2	The Space Segment Access and Utilization.	8
J		Space segment access methods, pre-assigned FDMA, demand assigned FDMA, SPADE	
		system, bandwidth-limited and power-limited TWT amplifier operation	
		TDMA: Reference Burst; Preamble and Postamble, carrier recovery, network	-
		synchronization, unique word detection, traffic date, frame efficiency, channel capacity,	
		preassigned TDMA, demand assigned TDMA, satellite switched TDMA	
		Code Division Multiple Access: Direct-sequence spread spectrum-acquisition and	-
		trackling, spectrum spreading and dispreading – CDMA throughput	
6		Satellite Networking	10
	6.1	Satellite Network: net work reference models and protocols, layering principle, open	1
		system interconnection (OSI), reference model, IP reference model, reference architecture	
		for satellite networks, basic characteristics of satellite networks, onboard connectivity with	
		transparent processing, analogue transparent switching, Frame organization, Window	
		organization, On board connectivity with beam scanning	
	6.1	Laser Satellite Communication: Link analysis, optical satellite link transmitter, optical	
		satellite link receiver, satellite beam acquisition, tracking & positioning, deep space optical	
		communication link	
		Total	52

- 1. Dennis Roddy, "Satellite Communications", 3rd Ed., Mc. Graw-Hill International Ed. 2001.
- 2. Wilbur L. Pritchard, Henri G. Suyderehoud, and Robert A. Nelson, "Satellite Communication systems Engineering", Pearson Publication
- 3. Gerard Maral and Michel Bousquet, "Satellite Communication Systems", 4th Edition Wiley Publication
- 4. Timothy Pratt, Charles Bostian, and Jeremy Allmuti, "Satellite Communications", John Willy & Sons (Asia) Pvt. Ltd. 2004
- 5. M. Richharia, "Satellite Communication Systems Design Principles", Macmillan Press Ltd. Second Edition 2003.
- 6. Gerard Maral, "VSAT Networks", John Willy & Sons

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the module

Course	Course Name		Examination Scheme								
Code				Theory Marks	5	Term	Practical	Oral	Total		
		Internal assessment End S				Work					
		Test	Test	Ave. Of	Exam						
		1	2	Test 1 and							
				Test 2							
ETC803	Internet and	20	20	20	80	-	-	-	100		
	Voice										
	Communication										

Course	Course Name		Examination Scheme								
Code				Theory Mark	S	Term	Practical	Oral	Total		
		Int	ternal a	ssessment	End Sem.	Work					
		Test	Test	Ave. Of	Exam						
		1	2	Test 1 and							
				Test 2							
ETC803	Internet and	20	20	20	80	-	-	-	100		
	Voice										
	Communication										

Course Pre requisite :

- ETC 502: Analog communication
- ETC 601: Digital Communication
- ETC 604: Computer Communication and Networks

Course Objectives:

- To focus on Internet protocol, standards, services and administration.
- To discuss voice over IP as a real-time interactive audio/video service.

Course Outcomes: The students will be able to:

- Implement local area networks using both static and dynamic addressing techniques including sub netting.
- Install, configure, and troubleshoot server and client operating systems.
- Disassemble, troubleshoot/debug, upgrade, replace basic components, and reassemble servers and client systems.
- Explain the concept of encapsulation and its relationship to layering in the network models.
- Explain how TCP's byte-stream sliding window is related to a traditional packet-based sliding window algorithm.
- Explain the operation of the components of a router including, DHCP, NAT/PAT, Routing function, Switching function.
- Describe how DNS works in the global Internet including caching and root servers.

Module No.		Topics	Hrs
1.		Review of TCP /IP:	06
	1.1	TCP /IP networking model, layer functions.	
	1.2	TCP/IP protocols, services, sockets and ports, encapsulations, difference between ISO	
		and Internet layering.	
2		Application Layer:	08
	2.1	Host configuration, DHCP	
	2.2	Domain Name System (DNS), remote Login, TELNET and SSH	
	2.3	FTP and TFTP, World Wide Web, HTTP, electronic mail, SMTP, POP, IMAP, and MIME	
3		Transport Layer:	12
	3.1	User datagram protocol(UDP) header fields and their functions, pseudo header	
	3.2	Transmission control protocol (TCP), need for stream delivery, properties of reliable	
		stream delivery, TCP header fields, ports, connections, end points, passive and active	
		open, segment, stream and sequence numbers, variable window size and flow control.	
	3.3	Out of band data, checksum, acknowledgement and retransmission, round trip samples	
	3.4	Karn's algorithm, timer back off, response to delay variation and congestion, TCP state machine, connection establishment	
4		Internetworking layer:	08
-	4.1	Internet protocol (IP) datagram, header fields and their functions	00
	4.2	Internet protocol (II) datagran, neuder neues and aren ranetarin Internet control message protocol, IP address classes, broadcast, multicast and special	
		addresses, network space and host space, subnets and supernets	
	4.3	Private IP addresses, classless inter domain routing (CIDR), CIDR subnet addressing,	
		variable length in CIDR subnet addressing	
5.		Voice Communication	04
	5.1	Digitizing audio and video, audio compression, video compression	
6.		Real-Time Interactive Audio and Video	16
	6.1	Characteristics, RTP, RTP packet format	
	6.2	UDP port, RTCP, sender report, receiver report, source description message, bye	
		message, application-specific message, UDP port	
	6.3	SIP,H.323	
	6.4	Flow characteristics, flow classes, techniques to improve QOS, resource reservation,	
		admission control	
		Total	52

- B. Forouzan, "*TCP/IP Protocol Suite*", 4th Edition, McGraw-Hill Publication
 Leon Garcia, "*Communication Networks*", 2nd Edition McGraw-Hill Publication
- 3. Kurose and Ross, "Computer Networking", 5th Edition Pearson Publication
- 4. Ted Wallingford, "Switching to VoIP", Oreilly Publication

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETE801	Speech Processing	04			04			04	

Course	Course				Examination S	Scheme					
Code	Name			Theory Mar	ks	Term	Practical	Oral	Total		
		Internal assessment			End Sem.	Work					
		Test	Test	Ave. Of	Exam						
		1	2	Test 1 and							
				Test 2							
ETE801	Speech	20	20	20	80	-	-	-	100		
	Processing										

Course Pre-Requisites:

- ETC405 Signals and Systems
- ETC602 Discrete Time Signal Processing

Course Objective:

- To introduce the models of speech production and acoustic phonetics
- To teach time and frequency domain techniques for estimating speech parameters
- To teach predictive techniques for speech coding
- To introduce speech recognition and speech synthesis applications

Course Outcomes: Students will be able to:

- Demonstrate basic knowledge in speech production mechanism, phoneme classification, digital models for speech production, Homomorphic speech processing and LPC analysis
- Demonstrate applications of signal processing theory for estimation of speech parameters in time and frequency domain including pitch and formants
- Analyze application of speech processing in speech compression, speech recognition, and speech synthesis
- Enhance their written and oral technical communication skills related to speech processing subject and will be better prepared for higher study and lifelong learning

Module No.		Topics	Hrs.
1.		Speech Production, Acoustic Phonetics and Auditory Perception	10
	1.1	Anatomy and physiology of speech organs, articulatory phonetics, acoustic phonetics, acoustic theory of speech production, discrete time model for speech production	
	1.2	Ear physiology and psychoacoustics	
2		Speech Analysis in Time Domain	06
	2.1	Time energy, average magnitude, and zero-crossing rate, speech vs silence discrimination	
	2.1	Short-time autocorrelation, pitch period estimation using short-time autocorrelation, median smoothing	
3		Speech Analysis in Frequency Domain:	06
	3.1	Time dependent Fourier representation for voiced and unvoiced speech signals, linear filtering interpretation, spectrographic displays	
	3.2	Pitch period estimation based on FFT and harmonic peak detection method, estimation of formants using log spectrum	
4		Homomorphic Speech Processing	08
	4.1	Cepstral analysis of speech, mel frequency cepstral coefficients (MFCC), perceptual	
		linear prediction (PLP)	
	4.2	Pitch period estimation in cepstral domain, evaluation of formants using cepstrum	
5		LPC and Parametric Speech Coding	12
	5.1	Review of lattice structure realization, forward and backward error filters, normal equations & its solutions, levinson-durbin algorithm, covariance method, Berg's algorithm	
	5.2	Channel Vocoders, linear prediction (LP) based vocoders, residual excited LP (RELP) based Vocoders, voice Excited LP (VELP) based vocoders, multi-pulse LP (MPLP) based vocoders, code excited LP (CELP) based vocoders	
6		Speech Processing Applications	10
	6.1	Speech recognition systems, deterministic sequence recognition for ASR, statistical sequence recognition for ASR (Hidden Markov Model (HMM))	
	6.2	Text to speech system (TTS), concatenative synthesis, synthesis using formants, LPC synthesizer	
		Total	52

- 1. Rabiner and Schafer, "Digital Processing of Speech Signals", Pearson Education, Delhi, 2004.
- 2. Shaila D. Apte, "Speech and Audio Processing", Wiley India, New Delhi, 2012.
- 3. Douglas O'Shaughnessy, "Speech Communications: Human & Machine", Universities Press, Hyderabad, Second Edition, 2001.
- 4. Ben Gold and Nelson Morgan, "Speech and Audio Signal Processing", Wiley India (P) Ltd, New Delhi, 2006.
- 5. Thomas F. Quatieri, "Discrete-Time Speech Signal Processing: Principles and Practice", Prentice Hall, 2001.
- 6. J. L. Flanagan, "Speech Analysis Synthesis and Perception", Second edition, Springer-Verlag (1972).

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.

Course Code	Course Name	Те	aching Sch	eme	Credits Assigned					
		Theory	Theory Practical Tutorial			Practical	Tutorial	Total		
ETE802	Telecom	04			04			04		
	Network									
	Management									

Course	Course				Examination Scheme						
Code	Name			Theory Mar	·ks	Term	Practical	Oral	Total		
		Int	ernal as	ssessment	End Sem.	Work					
		Test	Test	Ave. Of	Exam						
		1	2	Test 1 and							
				Test 2							
ETE802	Telecom	20	20	20	80	-	-	-	100		
	Network										
	Management										

Prerequisite: ETC 603: Computer Communication and Networks

Course Objective:

- To familiarize the student with the design, analysis operation and management of modern data communications networks.
- To provide the student with a working knowledge of the types of communications network management systems and their strengths and limitations in solving various information network management problems.

Course Outcomes: The students will be able to:

- Demonstrate broad knowledge of fundamental principles and technical standards underlying
- Understand basic of telecommunication, networking and information technologies.
- Architect and implement networked informative systems.
- Continuously improve their technology knowledge and communication skills.
- Anticipate the way technological change and emerging technologies might alter the assumptions underlying architectures and systems.

Modul e No.		Topics	Hrs
1.		Overview of Network Management	06
	1.1	Case histories on network, system and service management, challenges of IT	
		managers	-
	1.2	Network Management: Goals, organization and functions	
	1.3	Network management architecture and organization network management	
		perspectives	
2		OSI Network Management	08
	2.1	Network management standards	
	2.2	Network management models	
	2.3	Organization model	
	2.4	Information model	
	2.5	Communication model and functional model	-
	2.6	Abstract syntax notation – encoding structure, macros functional model CMIP/CMISE	
3		Internet Management (SNMP)	13
	3.1	SNMP-organizational model-	
	3.2	System overview.	
	3.3	Information model, communication model, functional model	
	3.4	SNMP proxy server, Management information, Protocol	
	3.5	Remote monitoring. RMON	
4		Broadband Network Management	10
	4.1	Broadband networks and services, ATM Technology – VP, VC, ATM Packet,	
		Integrated service, ATM LAN emulation, Virtual LAN	
	4.2	ATM Network Management - ATM network reference model, integrated	
		local management interface. ATM management information base, role of	
		SNMP and ILMI in ATM management.	
	4.3	M1, M2, M3, M4 interface. ATM digital exchange interface management	
5		Network Management Applications	08
	5.1	Configuration management.	
	5.2	Fault management	-
	5.3	Performance management	-
	5.4	Event correlation techniques	
	5.5	Security management	
	5.6	Accounting management, report management, policy based management	
		services	
	5.7	Level management	
6		Telecommunication Management Networks(TMN)	07
	6.1	Need for TMN	
	6.2	Conceptual model	ł
	6.3	TMN standards	1
	6.4	TMN management services architecture and TMN implementation	
		Total	52

- 1. Mani Subramaniam, "Network Management Principles and Practise", Addison Wisely, New York, 2000.
- 2. Lakshmi G. Raman, "*Fundamental of Telecommunications Network Management*" Eastern Economy Edition, IEEE Press New Delhi.
- 3. Salh Aiidarons, Thomas Plevoyak "*Telecommunications Network Technologies and implementations*" Eastern Economy Edition, IEEE press New Delhi-1998.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.

Course Code	Course Name	Teaching Scheme			Credits Assigned			
		Theory Practical Tutorial			Theory	Practical	Tutorial	Total
ETE803	Microwave	04			04			04
	Integrated Circuit							

Course	Course				Examination	Scheme			
Code	Name			Theory Mar	·ks	Term	Practical	Oral	Total
		Int	ernal as	ssessment	End Sem.	Work			
		Test 1	Test 2	Ave. Of Test 1 and Test 2	Exam				
ETE803	Microwave Integrated Circuit	20	20	20	80	-	-	-	100

Course pre requisite:

- ETC 403: Wave Theory and Propagation
- ETC 504: RF Modeling and Antennas
- ETC 704: Microwave and Radar Engineering
- •

Course Objective:

- To understand the integration of microwave devices in the form of IC.
- To understand the basic principles and advanced applications of Microwave Engineering,
- To design different amplifier, oscillator and mixers for various applications.

Course outcome: The students will be able to

- Design and implement the microwave layouts.
- Design and implement the microwave amplifier, oscillator, and mixer circuits.

Module		Topics	Hrs.
No.		Hybrid MICs And Monolithia MICs	08
1.	1.1	Hybrid MICs And Monolithic MICsDefinition, characteristics, comparison with conventional circuits, field of application	Vð
		and limitations and criteria for the choice of substrate material in HMICS and MMICS.	
	1.2	Thin film hybrid circuits, thick film hybrid circuits, art work, masking,	
		photolithography, resistor stabilization, sawing, brazing process, wire bonding.	
	1.3	Monolithic MICs: Doping by ion implantation, Ohmic contacts, metal resistive layers,	
		gate metal, dielectric and air-bridge vias, wafer process steps.	
2		Micro Strip Lines	08
	2.1	Planar wave guides, non-tem propagation, line impedance definitions, quasi-static	
		approximations, quasi-static line parameters.	
	2.2	Micro strip open circuits and gaps, micro strip corners, step change in width.	
	2.3	Dispersion analysis, micro strip characteristic impedance, symmetric t junction, green's	
		functions, millimeter wave modeling of micro strip lines.	
3		Coupled Line Propagation	10
	3.1	Coupled line propagation: wave equations for coupled lines, propagation models,	
		coupled line parameters, coupled line parameter variations with frequency, directional	
		couplings, lange coupler, coupled line pair operated as a four port.	
	3.2	Coplanar wave guides: design considerations and coplanar line circuits.	
4		Microwave Amplifier Design	12
	4.1	Introduction, derivation of transducer power gain, stability, power gains, voltage gains,	
		and current gains, single-stage transistor amplifier design.	
	4.2	Power amplifier design: device modeling and characteristics, optimum loading.	
	4.3	Single-stage power amplifier design and multi-stage design.	
	4.4	Power distributed amplifiers. class of operation, power amplifier stability, amplifier	
		linearization methods.	
5		Microwave Oscillator Design	08
	5.1	Introduction, compressed smith chart, series of parallel resonance, resonators, two-port	
		oscillator design, negative resistance from transistor model, oscillator q and output	
		power.	
	5.2	Noise in oscillators: linear approach, analytical approach to optimum oscillator design	
		using s parameters, nonlinear active models for oscillators.	
	5.3	Microwave oscillator performance, design of an oscillator using large single y	
		parameters, example for large single design based on bessel functions, design examples	
		for best phase noise and good output power.	
6		Microwave Mixer Design	06
	6.1	Introduction, diode mixer theory, single-diode, single-balanced and double-balanced	
		mixers.	4
	6.2	FET mixer theory, balanced FET mixers, special mixer circuits, mixer noise.	
		Total	52

- 1. D. H. Schrader, "Microstrip Circuit Analysis", Prentice Hall PTR, New Jersey.
- 2. D. M. Pozar, "Microwave Engineering", John Wiley & Sons Publication, 2013.
- 3. K. C. Gupta, R. Garg, and I. J. Bahl, "Microstrip Lines and Slot Lines", Artech House.
- 4. M. M. Radmanesh, "*Radio Frequency and Microwave Electronics*", Pearson Education, 2006.
- 5. D. Vendelin, A. M. Pavio, and U. L. Rohde, "*Microwave Circuit Design*", John Wiley & Sons Publication.
- 6. Sweet, "MIC and MMIC Amplifier and Oscillator Design", 1990 Edition, Artech House.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.

Course Code	Course Name	Те	aching Sche	eme	Credits Assigned				
		Theory Practical Tutorial			Theory	Practical	Tutorial	Total	
ETE804	Ultra Wide Band Communication	04	-		04			04	

Course	Course Name			Ex	aminatio	n Schem	e		
Code			The	ory Marks	Term	Practical	Oral	Total	
		Int	ernal ass	essment	End	Work			
		Test 1	Test 2	Ave. Of	Sem.				
				Test 1 and	Exam				
				Test 2					
ETE804	Ultra Wide	20	20	20	80	-	-	-	100
	Band								
	Communication								

Prerequisite: ETC 504: RF Modeling and Antennas.

Course Objective:

- To focuses on the basic techniques that concerns present and future dynamic UWB communication systems.
- To encompass all areas of design and implementation of UWB systems.
- To develop a comprehensive overview of UWB system design that spans propagation, transmit and receive antenna implementations, standards and advanced topics, modulation and multiple access, network issues, and applications.

Course Outcomes: Students will be able to;

- Understand nuances of planning and design of RF network
- Work professionally in the area of Antenna design and Radio Propagation.
- Apply the knowledge of mathematics and engineering to solve practical EM engineering problems.

Module No.		Topics	Hrs.
1.		Introduction	10
	1.1	UWB BASICS.	
	1.2	Regulatory bodies	
	1.3	UWB signals and systems with UWB waveforms	
	1.4	Power spectral density, Pulse shape, Pulse trains, Spectral masks	
	1.5	Multipath, penetration characteristics, spatial and spectral capacities – speed of data transmission	
	1.6	Gaussian waveforms, Designing waveforms for specific spectral masks.	
	1.7	Practical constraints and effects of imperfections.	
2		Signal Processing Techniques For UWB Systems And UWB Channel Modeling	10
	2.1	Effects of lossy medium on UWB transmitted signal	
	2.2	Time domain analysis, frequency domain analysis	
	2.3	Detection and Amplification,	
	2.4	Two ray UWB propagation model,	
	2.5	Frequency domain auto regressive model, IEEE proposals for UWB channel models	
3		UWB Communications	05
	3.1	UWB modulation methods, pulse trains	
	3.2	UWB transmitter/receiver	
	3.3	Multiple access techniques in UWB, capacity of UWB systems	
4		Advanced UWB Pulse Generation	05
	4.1	Comparison of UWB with other wideband communication systems	
	4.2	Interference and coexistence of UWB with other systems	
	4.3	Hermite pulses: orthogonal prolate spheroidal wave functions	
	4.4	Wavelet packets in UWB PSM	
	4.5	Applications of UWB communication systems	
5		UWB Antennas and Arrays, Position and Location with UWB Signals	10
	5.1	Antenna fundamentals: Antenna radiation for UWB signals	
	5.2	Conventional antennas and Impulse antennas for UWB systems	
	5.3	Beam forming for UWB signals: radar UWB array systems	
	5.4		
		time resolution issues, UWB positioning and communications	
6		UWB Communication Standards and Systems	12
	6.1	UWB standardization in wireless personal area networks	
	6.2	DS-UWB proposal, MB-OFDM UWB proposal: IEEE proposals for UWB channel models	
	6.3	UWB ad-hoc and sensor networks	
	6.4	MIMO and Space-time coding for UWB systems	
	6.5	Self-interference in high data-rate UWB communications, coexistence of DS-UWB with WIMAX	
		Total	52

- 1. M. Ghavami, L. B. Michael and R. Kohno, "Ultra Wideband Signals and Systems In Communication Engineering", 2nd Edition, John Wiley & Sons, NY, USA, 2007.
- 2. Jeffrey H. Reed, "An Introduction To Ultra Wideband Communication Systems", Prentice Hall Inc., NJ, USA, 2005.
- 3. Ian Oppermann, Matti Hamalainen and Jari Iinatti "*UWB Theory and Applications*", John Wiley & Sons Ltd, 2004

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.

Course Code	Course Name	Те	aching Sch	eme	Credits Assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
ETL 801	Wireless		02			01		01		
	Networks									
	Laboratory									

Course	Course		Examination Scheme									
Code	Name			Theory Marks	Term	Practical	Oral	Total				
			Interna	l assessment	Work	and						
		Test	Test	Ave. Of Test 1	Exam		Oral					
		1	2	and Test 2								
ETL801	Wireless					25		25	50			
	Networks											
	Laboratory											

At least ten experiments covering entire syllabus of ETC 801: Wireless Network be set to have predefined inference and conclusion. Simulation based experiments are also encouraged. An attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded. The average of grades converted in to marks should be taken into account for term work assessment

Course Code	Course Name	Те	aching Sch	eme	Credits Assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
ETL 802	Satellite		02			01		01		
	Communication									
	and Networks									
	Laboratory									

Course	Course Name		Examination Scheme									
Code				Theory Marks	Term	Practical	Oral	Total				
		1	nternal	assessment	Work	and						
		Test	Test	Ave. Of Test 1	Exam		Oral					
		1	2	and Test 2								
ETL802	Satellite					25		25	50			
	Communication											
	and Networks											
	Laboratory											

At least ten experiments covering entire syllabus of ETC 802: Satellite Communication and Network be set to have predefined inference and conclusion. Simulation based experiments are also encouraged. An attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded. The average of grades converted in to marks should be taken into account for term work assessment.

Course Code	Course Name	Те	aching Sch	eme	Credits Assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
ETL 803	Internet and		02			01		01		
	Voice									
	Communication									
	Laboratory									

Course	Course Name		Examination Scheme								
Code]	Theory Marks	Term	Practical	Oral	Total			
		Iı	nternal	assessment	Work	and					
		Test	Test	Ave. Of Test	Sem.		Oral				
		1	2	1 and Test 2	Exam						
ETL803	Internet and					25		25	50		
	Voice										
	Communication										
	Laboratory										

At least ten experiments covering entire syllabus of ETC 803: Internet and Voice Communication Laboratory be set to have predefined inference and conclusion. Simulation based experiments are also encouraged. An attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded. The average of grades converted in to marks should be taken into account for term work assessment

Course Code	Course Name	Teaching Scheme			Credits Assigned				
		Theory Practical Tutorial			Theory	Practical	Tutorial	Total	
ETEL 80X	Elective		02			01		01	

Course	Course Name		Examination Scheme								
Code				Theory Marks	Term	Practical	Oral	Total			
		Iı	nternal	assessment	End Sem.	Work	and				
		Test	Test	Ave. Of Test 1	Exam		Oral				
		1	2	and Test 2							
ETEL	Elective					25		25	50		
80X											

At least ten experiments covering entire syllabus of respective Elective subject be set to have predefined inference and conclusion. Simulation based experiments are also encouraged. An attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded. The average of grades converted in to marks should be taken into account for term work assessment

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETP801	Project (Stage II)		04			02		02	

Course	Course Name		Examination Scheme								
Code				Theory Mar	Term	Practical	Oral	Total			
		Internal assessment End Sem.									
		Test	Test	Ave. Of	Exam						
		1	2	Test 1 and							
				Test 2							
ETP801	Project (Stage					50	-	50	100		
	II)										

The final year students have already under gone project assignment in their seventh semester and in this semester the students are expected to continue the project work of stage I.

The college should keep proper assessment record of the progress of project and at the end of the semester it should be assessed for awarding TW marks. The TW should be examined by approved internal faculty appointed by the head of the institute on the basis of following:

- Scope and objective of the project work.
- Extensive Literature survey.
- Progress of the work (Continuous assessment)
- Design, implementation, and analysis of the project work.
- Results, conclusions and future scope.
- Report in prescribed University format.

An approved external examiner and internal examiner appointed by the head of the institute together will assess during oral examination. The oral examination is a presentation by the group members on the project along with demonstration of the work done. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained.