


End Semester Examination (R-24) SH 2025

Branch: Computer Engineering/ AIDS/ AIML	Course: Data Structure
Year/ Semester: SE / III	Course code: CEC302
Time: 03 hours	Marks: 80

Note:	1. All questions are compulsory.	Marks	CO	BL
	2. Figures to right indicate full marks.			
	3. Assume suitable data wherever necessary.			

Q. 1	Attempt any FOUR. (All questions carry equal marks)	20		
A.	Differentiate between linear and non-linear data structures. Definition of Data Structure – 01 Mark Difference between Linear & Non Linear Data structure (4 Points) & Diagrammatic Representation – 04 Marks	05	CO1	L4
B.	Convert the expressions into its corresponding postfix expression using stack-(A + B) * (C + D) All steps involve correct push and pop operations from the stack & conversion to a postfix expression. – 05 Marks Construct a table.	05	CO2	L3
C.	Differentiate between a linked list and an array. Five Comparison Points. – 05 Marks	05	CO3	L4
D.	Create a binary search tree by inserting the following elements in the given order: 25, 12, 89, 70, 100, 5, 15, 1, 10, 90. Construct Root Node – 01 Mark Construct Left Sub Tree – 02 Marks Construct Right Sub Tree – 02 marks	05	CO4	L3
E.	Explain following terminologies of a graph: a. Adjacent nodes b. Path c. Simple path d. Cycle e. Degree of a vertex Each terminology carries 01 Mark. Explain along with the graph.	05	CO5	L2
F.	Differentiate between linear and binary search. Five Comparison Points with example – 05 Marks	05	6	4
Q.2	Attempt any FOUR. (All questions carry equal marks)	40		

A.	Write a C program to simulate the customer queue in a bank using a queue data structure.	10	CO2	L3
B.	Write a C program to store student records (rollno, name, marks) using a linked list and perform operations- 1. insert a new record at the end, and 2. calculate and display the average marks	10	CO3	L3
C.	Construct an AVL Tree by inserting the following sequence of keys into an initially empty tree: 10, 20, 30, 25, 28, 27, 5 i. Tree after each insertion – 05 Marks ii. Clearly indicate where rotations are performed to maintain the balance factor- 03 Marks iii. Specify the type of rotation used in each step (LL, RR, LR, or RL) - 02 Marks	10	CO4	L3
D.	Consider the graph given below. Apply depth-first and breadth-first traversal schemes for the following graph. DFS Traversal Method using Stack Data Structure step-by-step procedure – 05 Marks DFS traversal: A → B → E → C → G → I → H → D BFS Traversal Method using Queue Data Structure step-by-step procedure – 05 Marks BFS traversal: A → B → C → D → E → H → G → I	10	CO5	L3
E.	Consider a hash table with size = 10. Using quadratic probing, insert the keys 27, 72, 63, 42, 36, 18, 29, and 101 into the table. Take $c_1 = 1$ and $c_2 = 3$. Calculate hash Value – 08 Marks Collisions – 02 Marks Index 0 1 2 3 4 5 6 7 8 9 Key 36 101 72 63 42 27 18 29	10	CO6	L3
F.	Construct a Huffman tree and determine the code for the following characters whose frequencies are given: A:20, B:10, C:10, D:30, E:30. Construct the Huffman tree step by step – 05 Marks Code for each symbol - 05 Marks	10	CO4	L3

	<table border="1"> <thead> <tr> <th>Symbol</th><th>Freq</th><th>Code</th></tr> </thead> <tbody> <tr> <td>A</td><td>20</td><td>00</td></tr> <tr> <td>B</td><td>10</td><td>010</td></tr> <tr> <td>C</td><td>10</td><td>011</td></tr> <tr> <td>D</td><td>30</td><td>10</td></tr> <tr> <td>E</td><td>30</td><td>11</td></tr> </tbody> </table> <p> A : 00 B : 010 C : 011 D : 10 E : 11 </p>	Symbol	Freq	Code	A	20	00	B	10	010	C	10	011	D	30	10	E	30	11		
Symbol	Freq	Code																			
A	20	00																			
B	10	010																			
C	10	011																			
D	30	10																			
E	30	11																			
Q.3	Attempt any FOUR	20																			
A.	<p>Write an algorithm to evaluate postfix expression. Algorithm for Postfix Evaluation – 05 Marks</p>	05	CO2	L3																	
B.	<p>Construct Binary Tree from given Inorder and Postorder traversals. Let us consider the below traversals:</p> <p>Inorder sequence: 4, 8, 2, 5, 1, 6, 3, 7 Postorder sequence: 8, 4, 5, 2, 6, 7, 3, 1</p> <pre> 1 / \ 2 3 / \ / \ 4 5 6 7 \ 8 </pre> <p>Left subtree – 03 Marks Right subtree – 02 Marks</p>	05	CO4	L3																	
C.	<p>Write a C program to perform the following operations on a singly linked list: Insert at the end, Delete at the beginning</p> <p>Insert at End – 03 marks Delete at the beginning – 02 Marks</p>	05	CO3	L3																	
D.	<p>Explain all three cases of the delete operation in a Binary Search Tree with an example.</p> <ol style="list-style-type: none"> Delete a node having No Children – 01 Marks Delete a node having one Child – 02 Marks Delete a node having two Children – 02 Marks 	05	CO4	L3																	
E.	<p>Explain topological sorting with an example. Explanation of topological sorting – 03 marks Example – 02 Marks</p>	05	CO5	L2																	

F.	Explain the following Hash Functions with an example: division method, multiplication, mid-square, and folding. Each method, along with an example and formula, carries 01 mark	05	CO6	L2
***** All the Best *****				