

 SIES Graduate School of Technology, Autonomus RISE WITH EDUCATION NAAC A+ (Affiliated to University of Mumbai)		End Semester Examination (R-24) SH 2025 Answer Key with marking scheme
Branch: Computer Engineering/AIDS/AIML	Course: Computer Organization and Architecture	
Year/ Semester: SE/III	Course code: CEC305/AIDSC305/AIMLC305	
Time: 02 hours	Marks: 60	
		Marks
Q. 1	Attempt any FOUR. (All questions carry equal marks)	15
A.	<ul style="list-style-type: none"> Definition of CO and CA – 1 mark -CO deals with hardware implementation and functional units, while CA deals with attributes visible to the programmer. At least 3 parameters – 2 marks Differentiation (tabular) – 2 marks 	5
B.	<ul style="list-style-type: none"> Listing all modes – 1 mark Mode 0: Simple I/O Mode 1: Handshake I/O Mode 2: Bidirectional I/O BSR: Bit Set Reset control for Port C. Explanation of each mode – 3 marks Mention of BSR mode – 1 mark 	5
C.	<ul style="list-style-type: none"> Definition – 1 mark -Addressing mode defines how operands are accessed. Each addressing mode explanation with example – 2 marks each Examples: <ul style="list-style-type: none"> Immediate (MOV A, #05H) Direct (MOV A, 30H) Indirect, Register, Indexed (any two expected). 	5
D.	<ul style="list-style-type: none"> Concept – 1 mark -Multi-core contains multiple processing units within one chip. -Enhances parallel execution, multitasking, and throughput. -Example: Dual-core, Quad-core systems. Working and architecture – 2 marks Performance improvement explanation – 2 marks 	5
Q.2		30
A.	<ul style="list-style-type: none"> Binary representation and 2's complement – 3 marks Stepwise Booth's algorithm operations – 5 marks Final result with verification – 2 marks 	10

B.	<ul style="list-style-type: none"> • Neat labeled diagram – 4 marks • Explanation of BIU and EU – 4 marks • Functional units overview – 2 marks <p>Expected Points: BIU: Instruction queue, segment registers, bus interface. EU: ALU, control unit, flag register. Mention pipelining and segmented memory model.</p>	10
C.	<ul style="list-style-type: none"> • Concept of virtual memory – 3 marks • Paging explanation – 3 marks • Segmentation explanation – 3 marks • Diagram/summary – 1 mark <p>Expected Points: • Virtual memory extends logical memory beyond physical. • Paging: Fixed-size blocks using page tables • Segmentation: Logical division into code, data, stack segments.</p>	10
D.	<ul style="list-style-type: none"> • Calculation of main memory bits – 3 marks • Calculation of set, tag, and word fields – 6 marks • Final answers – 1 mark <p>SET =4 bits, TAG=8bits, Word=7 bits</p>	10
E.	<ul style="list-style-type: none"> • Definition – 2 marks • Explanation of microprogram control – 2 marks • Microinstruction sequence for MOV – 3 marks • Microinstruction sequence for ADD – 3 marks <p>Solution: Micro-operations 1)MAR=PC; PCout, MARin, RD LOAD MDR from memory; PCin, MDRinE, WMFC PC=PC+1 IR=MDR;MDRout, IRin R3=R4; R4out, R3in</p> <p>Micro-operations 2) MAR=PC; PCout, MARin, RD LOAD MDR from memory; PCin, MDRinE, WMFC PC=PC+1 IR=MDR; MDRout, IRin Y=R3; R3out, Yin R4out, Select Y, Add, Zin Zout, R3in</p>	10
Q.3		15

A.	<ul style="list-style-type: none"> • Neat labelled diagram – 2 marks • Explanation of each block – 3 marks <p>-Include Input, Output, Memory, ALU, and Control Unit. -Explain data and control flow between units</p>	5
B.	<ul style="list-style-type: none"> • Concept – 1 mark • Working principle – 2 marks • Advantages and limitations – 2 marks <p>Expected Points: Uses fixed logic circuits for control. Fast operation but lacks flexibility. Implemented using combinational logic.</p>	5
C.	<ul style="list-style-type: none"> • Meaning of BSR mode – 1 mark • Control word format – 3 marks • Explanation of bits – 1 mark <p>Expected Points: D7 = 0 for BSR mode. D3–D1 select bit of Port C. D0 determines Set (1) or Reset (0).</p>	5
D.	<ul style="list-style-type: none"> • Definition/classification basis – 1 mark • Explanation of 4 types – 3 marks • Example – 1 mark <p>Expected Points: Classification based on instruction and data streams. SISD, SIMD, MISD, MIMD. Examples: SISD (single CPU), SIMD (vector processors), MIMD (multicore).</p>	5