
Page 1 of 11

(Affiliated to University of Mumbai)

End Semester Examination (R-24) SH 2025

Branch: Computer Engineering/ AIDS/

AIML

Course: Database Management Systems

Year/ Semester: SE III Course code: (CEC304/AIDSC304/AIMLC304)

Time: 03 hours Marks: 80

Note: 1. All questions are compulsory.

 2. Figures to right indicate full marks.

 3. Assume suitable data wherever necessary.

Marks CO BL

Q.

1

Attempt any FOUR. (All questions carry equal marks) 20

A. Describe the Three-level of abstraction with a proper diagram.
3 Level of Abstraction

Draw Diagram showing levels

05 CO1 L2

B. Describe in detail the limitations of conventional databases.

Conventional databases are limited by their :-

• high costs,

• complexity,

• poor scalability,

• inability to handle unstructured data,

• fixed schema, and

• potential for performance issues and data redundancy.

These limitations stem from their reliance on :-

• structured data formats and

• their architecture, which can struggle with the large

volumes and diverse types of data found in modern

applications

6 2 L2

C. Discuss group by and order by clause with example

Purpose ofOrder By Clause in Sql .Explain , Write Sql Query and diaplay

relation

Purpose of Group By Clause in Sql .Explain , Write Sql Query and

diaplay relatio

05 CO2 L2

D. Explain the necessary condition used by time stamp ordering protocol to

execute for a read/write operation

05 CO5 L2

E. Explain different entity types and attribue types in the Entity and

Relationship Diagram

ntities in an ER diagram are categorized as Strong, Weak, or

Associative. A strong entity has its own independent existence and is

represented by a single rectangle. A weak entity depends on a strong

entity for its existence and is shown with a double rectangle. An

associative entity, represented by a diamond inside a rectangle, resolves

many-to-many relationships between two or more entities.

Here's a breakdown of each type with an example:

05 CO2 L2

Page 2 of 11

• Strong Entity

o Definition: A strong entity is a real-world object, concept,

or event that has its own independent existence and can be

uniquely identified by its own attributes (primary key).

o Example: In a university system, a Student is a strong

entity because a student's existence and identity are

independent of any other entity like a course or a

professor. Each student can be uniquely identified by a

student ID.

o Representation: A single rectangle.

• 

 Weak Entity

• Definition: A weak entity is an entity that cannot exist on its own;

its existence is dependent on another entity, called the owner or

strong entity. It relies on the owner entity's identifier and does not

have a unique identifier of its own.

• Example: In a banking system, a Transaction might be a weak

entity. A transaction for a specific deposit or withdrawal cannot

exist without being associated with an Account. The transaction

might not have a unique ID on its own but depends on the account

it belongs to.

• Representation: A double rectangle

Key-point: In a Database Management System (DBMS), an attribute

is a property or characteristic of an entity that is used to describe an

entity. Types of Attributes

There are different types of attributes as discussed below-
• Simple Attribute

• Composite Attribute

• Single-Valued Attribute

• Multi-Valued Attribute

• Derived Attribute

F. Describe functional,partiall and transitive dependency

What is Functional Dependency?

Functional dependency states the relationship between two sets of

attributes where a value of a set of attributes is dependent on the other set

of attributes.
It is a relationship that typically exists between two attributes such that

with the help of one attribute we can get the values of another attribute.

The attribute that is used for finding the values of other attributes is called

the primary key attribute.
ypes of Dependencies

Partial Dependency
Full Dependency

Transitive Dependency
Partial Dependency

05 CO3 L2

Page 3 of 11

If the value of a non-primary attribute can be defined using part of the

primary key then it is called a partial dependency. Partial dependency

occurs when primary key is formed using more than one attribute.This

type of key also called as composite key.

In below given example, the primary key is formed using roll_no +

sub_id which can also be called as composite key.When composite key is

present and one of the non-primary attribute can is dependent on part of

the primary key instead of whole primary key then it is called as Partial

Dependency.
Example

Let's take an example, we have a table where we have columns of student

roll number, subject ID, sub name, and marks obtained.
Table

roll_no, sub_id, sub_name, sub_mark
1, 121, Science, 80
1, 131, Math, 65

2, 131, Math, 95
2, 141, English, 75

Here primary key will be roll_no+ sub_id because multiple roll_no can

have the same sub_id and the same roll_no can have multiple sub_id.In

the given example, roll_no 1 has two sub_id i.e. 121 and 131 where as

sub_id 131 has two roll_no 1 and 2.So here primary key will be roll_no +

sub_id.
But we do have another column of sub_name and the value of sub_name

can be easily obtained by only sub_id which is part of the primary

key.For example, sub_id = 131 will have the sub_name = ‘math’ here we

required only partial primary key i.e. sub_id.

This type of functional Dependency is known as Partial Dependency.

Transitive Dependency
If the value of a non-primary attribute can be defined using another non-

primary attribute then it is called a transitive dependency.
When any attribute does not require primary key and can easily get value

using another non-primary attribute then it is called as Transitive

Dependency.
Example
Let's take an example, we have a table where we have columns of student

roll number, name, city where student live, and zip-code of city .
Table

roll_no, name, city, zip-code
1, abc, pune, 411044
2, jkl, mumbai, 400001
3, uvw, pune, 411044
4, xyz, delhi, 110001

Here the primary key is roll_no, but we can identify the city using zip-

code where both city and zip-code are non-primary attributes.
So here roll_no → city and city→zip-code eventually resulting into

roll_no →zip-code. so we can find a non-primary attribute using another

non-primary attribute.For example, roll-no = 1 has city=pune and

Page 4 of 11

city=pune will have zip-code=411044.So wherever city is pune , zip-code

will be 411044
This type of functional Dependency is known as Transitive Dependency.

Q.2 Attempt any FOUR. (All questions carry equal marks) 40

A. Consider the following schema for Institute Library

Student(Rollno,Name,Father_Name,Branch)

Book(ISBN,Title,Author,Publisher)

Issue(Rollno,ISBN,Date_Of_Issue)

Write Relational Algebra expression for the following.

(ii)List Roll Number and Name of all students of the branch CSE

(iii)Find the name of students who have issued a book published by

'ABC’ Publisher

(iii)List title of all books and their author issues by student ‘Prashant’

(iv)List title of all books issued on or before 1st Jan 2014

(v)Rename relation Book to Book_Info

10 CO2 L4

B. Discuss Timestamp-based protocol in detail

Timestamp Ordering Protocol Rules

Timestamps follow some rules to perform read or write operations. The

rules are also known as Thomas rules.

Rule No. 01 is utilized when a transaction requires a Read (A)

operation.

If WTS(A) > TS (Ti), then Ti Rollback

Else (otherwise) execute R(A) operation and SET RTS (A) = MAX

{RTS(A), TS(Ti)}

Rules No.2 rules are used when a transaction needs to perform WRITE

(A)

 If RTS(A) > TS (Ti), then Ti Rollback.

If WTS(A) > TS (Ti), then Ti Rollback.

Else (otherwise) execute the W(A) operation and SET WTS (A) =

TS(Ti).

Where “A” is some data

10 C05 L2

C. Explain Conflict Searlizability with example.

Conflict Serializability ensures that a concurrent schedule produces the

same result as some serial execution by reordering non-conflicting

operations. It maintains data consistency and is stricter than View

Serializability, which allows more flexibility but still preserves

correctness.

Non-conflicting operations: Two operations are considered non-

conflicting if they operate on separate data items, or if they involve the

same data item but both are read operations.

Conflicting Operations
Two operations are said to be conflicting if all conditions are satisfied:
They belong to different transactions

10 CO5 L2

Page 5 of 11

They operate on the same data item
Atleast one of them is a write operation

D. Notown Records has decided to store information about musicians who

perform on its albums (as well as other company data) in a database.

(i)Each musician that records at Notown has an SSN, a name, an address,

and a phone number. Poorly paid musicians often share the same address,

and no address has more than one phone.
(ii)Each instrument used in songs recorded at Notown has a unique

identification number, a name (e.g., guitar, synthesizer, flute) and a

musical key (e.g., C, B-flat, E-flat).
(iii)Each album recorded on the Notown label has a unique identification

number, a title, a copyright date, a format (e.g., CD or MC), and an album

identifier.

(iv)Each song recorded at Notown has a title and an author.

(v)Each musician may play several instruments, and a given instrument

may be played by several musicians.

(vi)Each album has a number of songs on it, but no song may appear on

more than one album.

(vii)Each song is performed by one or more musicians, and a musician

may perform a number of songs.

(viii)Each album has exactly one musician who acts as its producer. A

musician may produce several albums, of course.
Identify Entities

Relationshipa

Attributes

Also show relationships

Show pimary keys for the entities

Design an ER diagram for the above database

10 CO2 L5

E. Consider the following insurance database and write a SQL queries for:

Person(driver_id,name,address)

Car(licence,model,year)

accident(report_no,date,location)

owns(driver_id,licence)

participated(driver_id, car, report_no,damage_amount)

 (i) Find the total number of people who owned cars that were involved in

10 CO5 L5

Page 6 of 11

accidents in 1989

(ii) Find no of accidents in which cars belonging to “Scott” were

involved.

(iii) Add a new record to the database. Assume any values for the

attributes.

(iv) Delete Mazda belonging to “John” .

(v) Update damage_amount for the car with licence no “AABB2000” in

the accident with report_no “AR2197” to 3500.

F. Consider the following relational schemes for a library database:

Book (Title, Author, Catalog_no, Publisher, Year, Price)

Collection (Title, Author, Catalog_no)

With the following functional dependencies:

I. Title,Author ->Catalog_no

II. Catalog_no -> Title, Author, Publisher, Year

III. Publisher Title Year -> Price

Assume {Author, Title} is the key for both schemes. Check in which Normal

form both relations are. Justify your answer

Book (Title, Author, Catalog_no, Publisher, Year, Price, bookCoverType,

contractDate)

Collection (Title, Author, Catalog_no). Assume {Author, Title} is the

key for both relations. Additional functional dependencies are :-

1. Title,Author --> Catalog_no

2. Catalog_no --> Publisher, Year, bookCoverType

3. Publisher, bookCoverType --> Price

4. Author --> contractDate

a. Explain what normal form the relation is in.

b. Apply normalization until the 3rd NF. State reasons behind each

normalization.

Answer:

a. It's in 1 NF, because no multi valued/composite attribute and no nested

relations.

b. It is not in 2NF as there is partial dependency due to FD IV.

Therefore, normalizing to 2NF:

Collection (Title,Author,Catalog_no)

Book (Title, Author, Catalog_no, Publisher, Year, Price,

bookCoverType) Author_Info(Author, ContractDate)

Now normalizing to 3NF as there is still transitive dependency in “Book”

table due to Fd II and III.

Collection (Title,Author,Catalog_no)

Author_Info(Author, ContractDate)

Book (Title, Author, Catalog_no)

Catalog (Catalog_no, Publisher, year, bookcovertype)

Price_info(Publisher, bookcovertype, price)

10 CO4 L3

Page 7 of 11

Q.3 Attempt any FOUR 20

A. Differentiate between Deferred Vs. Immediate Database Modification.

05 CO5 L2

B. Explain all properties of the transaction with example. (ACID
Properties)
xplain ACID properties related to Transaction management.

ACID properties—Atomicity, Consistency, Isolation, and Durability—

are fundamental guarantees for database transactions, ensuring data

integrity, accuracy, and reliability even during failures. Atomicity ensures

a transaction is an all-or-nothing operation, Consistency maintains a valid

database state, Isolation prevents concurrent transactions from interfering,

and Durability makes committed changes permanent.

Here's a breakdown of each property:

Atomicity (All or Nothing)

What it means: A transaction is treated as a single, indivisible unit. Either

all operations within the transaction are completed successfully, or none

of them are. If any part of the transaction fails, the entire transaction is

rolled back, and the database reverts to its state before the transaction

began.Example: In a banking transaction, transferring money from

account A to account B involves two steps: debiting account A and

crediting account B. Atomicity ensures that both these steps complete, or

neither does, preventing situations where money is debited but not

credited.

Consistency

What it means: A transaction must bring the database from one valid state

to another valid state, adhering to all defined rules, such as constraints,

triggers, and data integrity rules.Example: If a database rule prevents

negative account balances, a transaction attempting to withdraw more

money than available will be canceled to maintain consistency and

prevent invalid data.

Isolation

What it means: Each transaction executes as if it were the only one

running on the system, ensuring that the partial results of concurrent

transactions are not visible to others. This prevents interference between

transactions running simultaneously.Example: If transaction T1 is

updating a customer's balance, transaction T2 should not be able to see

the intermediate, uncommitted state of the balance before T1 has

completed. Different isolation levels provide varying degrees of

protection against issues like dirty reads (reading uncommitted data) and

non-repeatable reads (reading different results for the same query

multiple times within a single transaction).

Durability

What it means: Once a transaction is successfully committed, its changes

05 CO4 L2

Page 8 of 11

are permanent and will survive any subsequent system failures, such as

power outages or crashes.Example: After a transaction is committed in a

banking system, even if the system crashes immediately afterward, the

changes to the database will be preserved, and the correct data will be

available when the system restarts. This is typically achieved through

mechanisms like write-ahead logging.

C. Define serializability, Conflict serializability and view serializability 05 CO4 L2

D. Explain DCL and TCL commands in SQL

. DCL - Data Control Language

DCL (Data Control Language) includes commands such as GRANT and

REVOKE which mainly deal with the rights, permissions and other

controls of the database system. These commands are used to control

access to data in the database by granting or revoking permissions.

Command Description Syntax

GRANT

Assigns new privileges to a

user account, allowing

access to specific database

objects, actions or

functions.

GRANT privilege_type

[(column_list)] ON

[object_type] object_name

TO user [WITH GRANT

OPTION];

REVOKE

Removes previously

granted privileges from a

user account, taking away

their access to certain

database objects or actions.

REVOKE [GRANT

OPTION FOR]

privilege_type

[(column_list)] ON

[object_type] object_name

FROM user [CASCADE];

Example:

GRANT SELECT, UPDATE ON employees TO user_name;

This command grants the user user_name the permissions to select and

update records in the employees table.

5. TCL - Transaction Control Language

Transactions group a set of tasks into a single execution unit. Each

transaction begins with a specific task and ends when all the tasks in the

group are successfully completed. If any of the tasks fail, transaction

fails. Therefore, a transaction has only two results: success or failure.

Command Description Syntax

BEGIN

TRANSACTION

Starts a new

transaction

BEGIN

TRANSACTION

[transaction_name];

05 CO4 L2

Page 9 of 11

COMMIT
Saves all changes made

during the transaction
COMMIT;

ROLLBACK

Undoes all changes

made during the

transaction

ROLLBACK;

SAVEPOINT

Creates a savepoint

within the current

transaction

SAVEPOINT

savepoint_name;

Example:

BEGIN TRANSACTION;
UPDATE employees SET department = 'Marketing' WHERE department

= 'Sales';

SAVEPOINT before_update;

UPDATE employees SET department = 'IT' WHERE department = 'HR';
ROLLBACK TO SAVEPOINT before_update;
COMMIT;

In this example, a transaction is started, changes are made and a savepoint

is set. If needed, the transaction can be rolled back to the savepoint before

being committed.

E. Explain the design steps of cloud database.

Step 1: Define Requirements and Use Cases

Before designing a cloud-based database, it's crucial to understand the

requirements and use cases. This involves identifying the types of data to

be stored, the expected workload, query patterns, and performance

requirements.

Example:

• Use Case: An e-commerce platform needs to store customer

information, product catalog, order history, and transaction data.

• Requirements: The database must support high read and write

throughput, handle concurrent user requests, and scale

dynamically based on demand.

Step 2: Choose the Right Cloud Database Service

Selecting the appropriate cloud database service is essential for meeting

the project's requirements and objectives. Options include relational

databases (e.g., Amazon RDS, Google Cloud SQL), NoSQL databases

(e.g., Amazon DynamoDB, Google Cloud Firestore), and managed

database services (e.g., Amazon Aurora, Google Cloud Spanner).

Example:

• Relational Database: Choose Amazon RDS for MySQL or Google

Cloud SQL for PostgreSQL if the application requires ACID

compliance and relational data modeling.

• NoSQL Database: Opt for Amazon DynamoDB or Google Cloud

Firestore for flexible schema, high scalability, and low-latency

05 CO6 L2

https://www.geeksforgeeks.org/devops/amazon-rds-introduction-to-amazon-relational-database-system/
https://www.geeksforgeeks.org/devops/google-cloud-sql/
https://www.geeksforgeeks.org/dbms/introduction-to-nosql/
https://www.geeksforgeeks.org/python/dynambodb-tables-items-and-attributes/
https://www.geeksforgeeks.org/dbms/firestore-and-its-advantages/
https://www.geeksforgeeks.org/devops/amazon-aurora/
https://www.geeksforgeeks.org/sql/what-is-mysql/#:~:text=MySQL%20is%20a%20Relational%20Database,not%20an%20open-source%20language.
https://www.geeksforgeeks.org/postgresql/postgresql-tutorial/
https://www.geeksforgeeks.org/dbms/acid-properties-in-dbms/
https://www.geeksforgeeks.org/dbms/acid-properties-in-dbms/
https://www.geeksforgeeks.org/data-analysis/data-modeling-a-comprehensive-guide-for-analysts/

Page 10 of 11

data access.

Step 3: Design the Database Schema

Once the cloud database service is chosen, it's time to design the database

schema based on the identified requirements and use cases. This involves

defining tables, indexes, relationships, and access controls.

Example:

• Customer Table: Store customer information such as name,

email, address, and phone number.

• Product Table: Maintain a product catalog with attributes like

ID, name, description, price, and inventory.

• Order Table: Track order history, including order ID, customer

ID, product ID, quantity, and timestamp.

Step 4: Optimize for Performance and Scalability

Performance and scalability are critical factors in cloud-based database

design. Utilize features like caching, indexing, partitioning, and sharding

to optimize performance and handle increasing workload.

Example:

• Caching: Use in-memory caching solutions like Amazon

ElastiCache or Google Cloud Memorystore to improve read

performance and reduce database load.

• Indexing: Create indexes on frequently queried columns to speed

up data retrieval operations.

• Partitioning/Sharding: Distribute data across multiple shards or

partitions to distribute load and scale horizontally.

Step 5: Implement Data Security and Compliance

Ensure data security and compliance with industry standards and

regulations such as GDPR, HIPAA, or PCI DSS. Implement encryption,

access controls, auditing, and regular security assessments to protect

sensitive data.

Example:

• Encryption: Encrypt data at rest and in transit using encryption

mechanisms provided by the cloud database service (e.g., AWS

KMS, Google Cloud KMS).

• Access Controls: Define IAM roles, policies, and fine-grained

access controls to restrict access to sensitive data based on user

roles and permissions.

• Auditing: Enable database auditing features to track and monitor

user activities, data access, and security events.

Step 6: Test and Monitor Performance

Thoroughly test the cloud-based database solution under various

conditions to ensure reliability, performance, and scalability. Implement

monitoring and alerting mechanisms to detect and address performance

issues proactively.

Example:

• Load Testing: Simulate heavy user traffic and workload using

load testing tools like Apache JMeter or Gatling to evaluate

database performance and scalability.

• Monitoring: Set up monitoring tools such as Amazon

https://www.geeksforgeeks.org/dbms/indexing-in-databases-set-1/
https://www.geeksforgeeks.org/computer-networks/what-is-data-encryption/
https://www.geeksforgeeks.org/devops/aws-tutorial/
https://www.geeksforgeeks.org/devops/aws-tutorial/
https://www.geeksforgeeks.org/accounting/auditing-purpose-importance-and-types/
https://www.geeksforgeeks.org/software-testing/software-testing-load-testing/

Page 11 of 11

CloudWatch or Google Cloud Monitoring to monitor key

performance metrics like CPU utilization, memory usage, and

query latency.

F. Discuss mapping of types of relationships from ER to relation with

suitable example Write rules
Consider an eaxmple ER dia. And show

1..Mapping of Entities

2.Mapping of Weak entity

3Mapping of Binary Relationship with 1:1 cardinality with total

participation of an entity

4. Binary Relationship with n: 1 cardinality

5.Binary relationship with N:M cardinality

05 CO2 L2

 ********* All the Best*********

