Graduate School of

“Technalogy o)
Na

(Affiliated to University of Mumbai)

End Semester Examination (R-24) SH 2025

Branch: Computer Engineering/ AIDS/
AIML

Course: Database Management Systems

Year/ Semester: SE III

Course code: (CEC304/AIDSC304/AIMLC304)

Time: 03 hours

Marks: 80

Note: 1. All questions are compulsory.

2. Figures to right indicate full marks. Marks | CO | BL
3. Assume suitable data wherever necessary.

Q. | Attempt any FOUR. (All questions carry equal marks) 20

[a—y

A. | Describe the Three-level of abstraction with a proper diagram. 05 |COl | L2

3 Level of Abstraction

Draw Diagram showing levels

B. | Describe in detail the limitations of conventional databases. 6 2 L2
Conventional databases are limited by their :-

e high costs,
complexity,
poor scalability,

fixed schema, and

applications

inability to handle unstructured data,

e potential for performance issues and data redundancy.
These limitations stem from their reliance on :-
e structured data formats and
e their architecture, which can struggle with the large
volumes and diverse types of data found in modern

C. | Discuss group by and order by clause with example 05 |CO2|L2
Purpose ofOrder By Clause in Sql .Explain , Write Sql Query and diaplay

relation

diaplay relatio

Purpose of Group By Clause in Sql .Explain , Write Sql Query and

D. | Explain the necessary condition used by time stamp ordering protocol to | 05 | COS | L2

execute for a read/write operation

E. | Explain different entity types and attribue types in the Entity and 05 |CO2|L2

Relationship Diagram

ntities in an ER diagram are categorized as Strong, Weak, or
Associative. A strong entity has its own independent existence and is
represented by a single rectangle. A weak entity depends on a strong
entity for its existence and is shown with a double rectangle. An
associative entity, represented by a diamond inside a rectangle, resolves
many-to-many relationships between two or more entities.

Here's a breakdown of each type with an example:

Page 1 0of 11

e Strong Entity

o Definition: A strong entity is a real-world object, concept,
or event that has its own independent existence and can be
uniquely identified by its own attributes (primary key).

o Example: In a university system, a Student is a strong
entity because a student's existence and identity are
independent of any other entity like a course or a
professor. Each student can be uniquely identified by a
student ID.

o Representation: A single rectangle.

o []

[J Weak Entity

¢ Definition: A weak entity is an entity that cannot exist on its own;
its existence is dependent on another entity, called the owner or
strong entity. It relies on the owner entity's identifier and does not
have a unique identifier of its own.

e Example: In a banking system, a Transaction might be a weak
entity. A transaction for a specific deposit or withdrawal cannot
exist without being associated with an Account. The transaction
might not have a unique ID on its own but depends on the account
it belongs to.

¢ Representation: A double rectangle

Key-point: In a Database Management System (DBMS), an attribute
is a property or characteristic of an entity that is used to describe an
entity. Types of Attributes

There are different types of attributes as discussed below-

e Simple Attribute

o Composite Attribute
e Single-Valued Attribute
e Multi-Valued Attribute
e Derived Attribute
Describe functional,partiall and transitive dependency 05 |CO3|L2

What is Functional Dependency?

Functional dependency states the relationship between two sets of
attributes where a value of a set of attributes is dependent on the other set
of attributes.

It is a relationship that typically exists between two attributes such that
with the help of one attribute we can get the values of another attribute.
The attribute that is used for finding the values of other attributes is called
the primary key attribute.

ypes of Dependencies

Partial Dependency

Full Dependency

Transitive Dependency

Partial Dependency

Page 2 of 11

If the value of a non-primary attribute can be defined using part of the
primary key then it is called a partial dependency. Partial dependency
occurs when primary key is formed using more than one attribute. This
type of key also called as composite key.

In below given example, the primary key is formed using roll no +
sub_id which can also be called as composite key.When composite key is
present and one of the non-primary attribute can is dependent on part of
the primary key instead of whole primary key then it is called as Partial
Dependency.

Example

Let's take an example, we have a table where we have columns of student
roll number, subject ID, sub name, and marks obtained.

Table

roll no, sub id, sub name, sub_mark

1, 121, Science, 80

1, 131, Math, 65

2, 131, Math, 95

2, 141, English, 75

Here primary key will be roll_no+ sub_id because multiple roll_no can
have the same sub_id and the same roll no can have multiple sub_id.In
the given example, roll no 1 has two sub idi.e. 121 and 131 where as
sub_id 131 has two roll no 1 and 2.So here primary key will be roll no +
sub_id.

But we do have another column of sub_name and the value of sub_name
can be easily obtained by only sub_id which is part of the primary
key.For example, sub_id = 131 will have the sub_name = ‘math’ here we
required only partial primary key i.e. sub_id.

This type of functional Dependency is known as Partial Dependency.

Transitive Dependency

If the value of a non-primary attribute can be defined using another non-
primary attribute then it is called a transitive dependency.

When any attribute does not require primary key and can easily get value
using another non-primary attribute then it is called as Transitive
Dependency.

Example

Let's take an example, we have a table where we have columns of student
roll number, name, city where student live, and zip-code of city .

Table

roll_no, name, city, zip-code

1, abc, pune, 411044

2, jkl, mumbai, 400001

3, uvw, pune, 411044

4, xyz, delhi, 110001

Here the primary key is roll_no, but we can identify the city using zip-
code where both city and zip-code are non-primary attributes.

So here roll no — city and city—zip-code eventually resulting into
roll_no —zip-code. so we can find a non-primary attribute using another
non-primary attribute.For example, roll-no = 1 has city=pune and

Page 3 of 11

city=pune will have zip-code=411044.So wherever city is pune , zip-code
will be 411044
This type of functional Dependency is known as Transitive Dependency.

Attempt any FOUR. (All questions carry equal marks)

40

Consider the following schema for Institute Library
Student(Rollno,Name,Father Name,Branch)
Book(ISBN,Title,Author,Publisher)
Issue(Rollno,ISBN,Date_Of Issue)

Write Relational Algebra expression for the following.

(i1)List Roll Number and Name of all students of the branch CSE
(ii1)Find the name of students who have issued a book published by
'ABC’ Publisher

(111)List title of all books and their author issues by student ‘Prashant’
(iv)List title of all books issued on or before 1st Jan 2014
(v)Rename relation Book to Book Info

10

CO2

L4

Discuss Timestamp-based protocol in detail

Timestamp Ordering Protocol Rules

Timestamps follow some rules to perform read or write operations. The
rules are also known as Thomas rules.

Rule No. 01 is utilized when a transaction requires a Read (A)
operation.

If WTS(A) > TS (Ti), then Ti Rollback

Else (otherwise) execute R(A) operation and SET RTS (A) = MAX
{RTS(A), TS(Ti)}

Rules No.2 rules are used when a transaction needs to perform WRITE
A)

If RTS(A) > TS (Ti), then Ti Rollback.

If WTS(A) > TS (Ti), then Ti Rollback.

Else (otherwise) execute the W(A) operation and SET WTS (A) =
TS(Ti).

Where “A” is some data

10

C05

L2

Explain Conflict Searlizability with example.

Conflict Serializability ensures that a concurrent schedule produces the
same result as some serial execution by reordering non-conflicting
operations. It maintains data consistency and is stricter than View
Serializability, which allows more flexibility but still preserves
correctness.

Non-conflicting operations: Two operations are considered non-
conflicting if they operate on separate data items, or if they involve the
same data item but both are read operations.

Conlflicting Operations

Two operations are said to be conflicting if all conditions are satisfied:
They belong to different transactions

10

CO5

L2

Page 4 of 11

They operate on the same data item
Atleast one of them is a write operation

l;=read(Q) l;=read(Q) No Conflict
li = read(Q) ;= write(Q) Conflict
I; = write(Q) l;=read(Q) Conflict
li=write(Q) | [=write(Q) Conflict

Notown Records has decided to store information about musicians who
perform on its albums (as well as other company data) in a database.
(i)Each musician that records at Notown has an SSN, a name, an address,
and a phone number. Poorly paid musicians often share the same address,
and no address has more than one phone.

(i1)Each instrument used in songs recorded at Notown has a unique
identification number, a name (e.g., guitar, synthesizer, flute) and a
musical key (e.g., C, B-flat, E-flat).

(ii1)Each album recorded on the Notown label has a unique identification
number, a title, a copyright date, a format (e.g., CD or MC), and an album
identifier.

(iv)Each song recorded at Notown has a title and an author.

(v)Each musician may play several instruments, and a given instrument
may be played by several musicians.

(vi)Each album has a number of songs on it, but no song may appear on
more than one album.

(vii)Each song is performed by one or more musicians, and a musician
may perform a number of songs.

(viii)Each album has exactly one musician who acts as its producer. A
musician may produce several albums, of course.

Identify Entities

Relationshipa

Attributes

Also show relationships
Show pimary keys for the entities
Design an ER diagram for the above database

10

CO2 | L5

Consider the following insurance database and write a SQL queries for:
Person(driver id,name,address)

Car(licence,model,year)

accident(report_no,date,location)

owns(driver_id,licence)

participated(driver id, car, report no,damage amount)

(1) Find the total number of people who owned cars that were involved in

10

COS5 | LS

Page 5 of 11

accidents in 1989

(i1) Find no of accidents in which cars belonging to “Scott” were
involved.

(ii1) Add a new record to the database. Assume any values for the
attributes.

(iv) Delete Mazda belonging to “John™ .

(v) Update damage amount for the car with licence no “AABB2000” in
the accident with report no “AR2197” to 3500.

Consider the following relational schemes for a library database: 10 CO4 | L3
Book (Title, Author, Catalog_no, Publisher, Year, Price)
Collection (Title, Author, Catalog_no)

With the following functional dependencies:

I. Title,Author ->Catalog no

II. Catalog_no -> Title, Author, Publisher, Year

III. Publisher Title Year -> Price

Assume {Author, Title} is the key for both schemes. Check in which Normal
form both relations are. Justify your answer

Book (Title, Author, Catalog_no, Publisher, Year, Price, bookCoverType,
contractDate)
Collection (Title, Author, Catalog_no). Assume {Author, Title} is the
key for both relations. Additional functional dependencies are :-

1. Title,Author --> Catalog_no

2. Catalog no --> Publisher, Year, bookCoverType

3. Publisher, bookCoverType --> Price

4. Author --> contractDate
a. Explain what normal form the relation is in.
b. Apply normalization until the 3rd NF. State reasons behind each
normalization.
Answer:
a. It's in 1 NF, because no multi valued/composite attribute and no nested
relations.
b. It is not in 2NF as there is partial dependency due to FD IV.

Therefore, normalizing to 2NF:

Collection (Title,Author,Catalog_no)

Book (Title, Author, Catalog_no, Publisher, Year, Price,
bookCoverType) Author Info(Author, ContractDate)

Now normalizing to 3NF as there is still transitive dependency in “Book”
table due to Fd II and III.

Collection (Title,Author,Catalog_no)

Author Info(Author, ContractDate)

Book (Title, Author, Catalog no)

Catalog (Catalog_no, Publisher, year, bookcovertype)
Price_info(Publisher, bookcovertype, price)

Page 6 of 11

Q.3 | Attempt any FOUR 20
A. | Differentiate between Deferred Vs. Immediate Database Modification. 05 CO5 | L2
B. | Explain all properties of the transaction with example. (ACID 05 CO4 | L2

Properties)

xplain ACID properties related to Transaction management.

ACID properties—Atomicity, Consistency, Isolation, and Durability—
are fundamental guarantees for database transactions, ensuring data
integrity, accuracy, and reliability even during failures. Atomicity ensures
a transaction is an all-or-nothing operation, Consistency maintains a valid
database state, Isolation prevents concurrent transactions from interfering,
and Durability makes committed changes permanent.

Here's a breakdown of each property:
Atomicity (All or Nothing)

What it means: A transaction is treated as a single, indivisible unit. Either
all operations within the transaction are completed successfully, or none
of them are. If any part of the transaction fails, the entire transaction is
rolled back, and the database reverts to its state before the transaction
began.Example: In a banking transaction, transferring money from
account A to account B involves two steps: debiting account A and
crediting account B. Atomicity ensures that both these steps complete, or
neither does, preventing situations where money is debited but not
credited.

Consistency

What it means: A transaction must bring the database from one valid state
to another valid state, adhering to all defined rules, such as constraints,
triggers, and data integrity rules.Example: If a database rule prevents
negative account balances, a transaction attempting to withdraw more
money than available will be canceled to maintain consistency and
prevent invalid data.

Isolation

What it means: Each transaction executes as if it were the only one
running on the system, ensuring that the partial results of concurrent
transactions are not visible to others. This prevents interference between
transactions running simultaneously.Example: If transaction T1 is
updating a customer's balance, transaction T2 should not be able to see
the intermediate, uncommitted state of the balance before T1 has
completed. Different isolation levels provide varying degrees of
protection against issues like dirty reads (reading uncommitted data) and
non-repeatable reads (reading different results for the same query
multiple times within a single transaction).

Durability

What it means: Once a transaction is successfully committed, its changes

Page 7 of 11

are permanent and will survive any subsequent system failures, such as
power outages or crashes.Example: After a transaction is committed in a
banking system, even if the system crashes immediately afterward, the
changes to the database will be preserved, and the correct data will be
available when the system restarts. This is typically achieved through
mechanisms like write-ahead logging.

Define serializability, Conflict serializability and view serializability

05

CO4 | L2

Explain DCL and TCL commands in SQL

. DCL - Data Control Language

DCL (Data Control Language) includes commands such as GRANT and
REVOKE which mainly deal with the rights, permissions and other
controls of the database system. These commands are used to control
access to data in the database by granting or revoking permissions.

Command Description Syntax

Assigns new privileges toa GRANT privilege type

user account, allowing [(column_list)] ON

GRANT access to specific database ~ [object type] object name
objects, actions or TO user [WITH GRANT
functions. OPTIONY;

REVOKE [GRANT
OPTION FOR]

privilege type
[(column_list)] ON
[object type] object name
FROM user [CASCADE];

Removes previously
granted privileges from a
REVOKE user account, taking away
their access to certain
database objects or actions.

Example:

GRANT SELECT, UPDATE ON employees TO user name;

This command grants the user user name the permissions to select and
update records in the employees table.

5. TCL - Transaction Control Language

Transactions group a set of tasks into a single execution unit. Each
transaction begins with a specific task and ends when all the tasks in the
group are successfully completed. If any of the tasks fail, transaction
fails. Therefore, a transaction has only two results: success or failure.

Command Description Syntax
BEGIN
BEGIN Starts a new TRANSACTION

TRANSACTION transaction :
[transaction name];

05

CO4 | L2

Page 8 of 11

Saves all changes made

COMMIT during the transaction COMMIT;
Undoes all changes
ROLLBACK made during the ROLLBACK;
transaction
Creates a savepoint
SAVEPOINT within the current SAVEPOINT
. savepoint_name;
transaction
Example:
BEGIN TRANSACTION;
UPDATE employees SET department = 'Marketing' WHERE department
= 'Sales';

SAVEPOINT before_update;

UPDATE employees SET department = 'IT' WHERE department = 'HR';
ROLLBACK TO SAVEPOINT before update;

COMMIT;

In this example, a transaction is started, changes are made and a savepoint
is set. If needed, the transaction can be rolled back to the savepoint before
being committed.

Explain the design steps of cloud database. 05 |CO6 | L2
Step 1: Define Requirements and Use Cases

Before designing a cloud-based database, it's crucial to understand the
requirements and use cases. This involves identifying the types of data to
be stored, the expected workload, query patterns, and performance
requirements.

Example:

e Use Case: An e-commerce platform needs to store customer
information, product catalog, order history, and transaction data.

o Requirements: The database must support high read and write
throughput, handle concurrent user requests, and scale
dynamically based on demand.

Step 2: Choose the Right Cloud Database Service

Selecting the appropriate cloud database service is essential for meeting
the project's requirements and objectives. Options include relational
databases (e.g., Amazon RDS, Google Cloud SQL), NoSQL databases
(e.g., Amazon DynamoDB, Google Cloud Firestore), and managed
database services (e.g., Amazon Aurora, Google Cloud Spanner).
Example:

e Relational Database: Choose Amazon RDS for MySQL or Google
Cloud SQL for PostgreSQL if the application requires ACID
compliance and relational data modeling.

e NoSQL Database: Opt for Amazon DynamoDB or Google Cloud
Firestore for flexible schema, high scalability, and low-latency

Page 9 of 11

https://www.geeksforgeeks.org/devops/amazon-rds-introduction-to-amazon-relational-database-system/
https://www.geeksforgeeks.org/devops/google-cloud-sql/
https://www.geeksforgeeks.org/dbms/introduction-to-nosql/
https://www.geeksforgeeks.org/python/dynambodb-tables-items-and-attributes/
https://www.geeksforgeeks.org/dbms/firestore-and-its-advantages/
https://www.geeksforgeeks.org/devops/amazon-aurora/
https://www.geeksforgeeks.org/sql/what-is-mysql/#:~:text=MySQL%20is%20a%20Relational%20Database,not%20an%20open-source%20language.
https://www.geeksforgeeks.org/postgresql/postgresql-tutorial/
https://www.geeksforgeeks.org/dbms/acid-properties-in-dbms/
https://www.geeksforgeeks.org/dbms/acid-properties-in-dbms/
https://www.geeksforgeeks.org/data-analysis/data-modeling-a-comprehensive-guide-for-analysts/

data access.
Step 3: Design the Database Schema
Once the cloud database service is chosen, it's time to design the database
schema based on the identified requirements and use cases. This involves
defining tables, indexes, relationships, and access controls.
Example:

e Customer Table: Store customer information such as name,
email, address, and phone number.

e Product Table: Maintain a product catalog with attributes like
ID, name, description, price, and inventory.

e Order Table: Track order history, including order ID, customer
ID, product ID, quantity, and timestamp.

Step 4: Optimize for Performance and Scalability

Performance and scalability are critical factors in cloud-based database
design. Utilize features like caching, indexing, partitioning, and sharding
to optimize performance and handle increasing workload.

Example:

e Caching: Use in-memory caching solutions like Amazon
ElastiCache or Google Cloud Memorystore to improve read
performance and reduce database load.

e Indexing: Create indexes on frequently queried columns to speed
up data retrieval operations.

e Partitioning/Sharding: Distribute data across multiple shards or
partitions to distribute load and scale horizontally.

Step S: Implement Data Security and Compliance

Ensure data security and compliance with industry standards and
regulations such as GDPR, HIPAA, or PCI DSS. Implement encryption,
access controls, auditing, and regular security assessments to protect
sensitive data.

Example:

e Encryption: Encrypt data at rest and in transit using encryption
mechanisms provided by the cloud database service (e.g., AWS
KMS, Google Cloud KMS).

e Access Controls: Define IAM roles, policies, and fine-grained
access controls to restrict access to sensitive data based on user
roles and permissions.

e Auditing: Enable database auditing features to track and monitor
user activities, data access, and security events.

Step 6: Test and Monitor Performance

Thoroughly test the cloud-based database solution under various
conditions to ensure reliability, performance, and scalability. Implement
monitoring and alerting mechanisms to detect and address performance
issues proactively.

Example:

e Load Testing: Simulate heavy user traffic and workload using
load testing tools like Apache JMeter or Gatling to evaluate
database performance and scalability.

e Monitoring: Set up monitoring tools such as Amazon

Page 10 of 11

https://www.geeksforgeeks.org/dbms/indexing-in-databases-set-1/
https://www.geeksforgeeks.org/computer-networks/what-is-data-encryption/
https://www.geeksforgeeks.org/devops/aws-tutorial/
https://www.geeksforgeeks.org/devops/aws-tutorial/
https://www.geeksforgeeks.org/accounting/auditing-purpose-importance-and-types/
https://www.geeksforgeeks.org/software-testing/software-testing-load-testing/

CloudWatch or Google Cloud Monitoring to monitor key
performance metrics like CPU utilization, memory usage, and
query latency.

Discuss mapping of types of relationships from ER to relation with
suitable example Write rules

Consider an eaxmple ER dia. And show

1..Mapping of Entities

2.Mapping of Weak entity

3Mapping of Binary Relationship with 1:1 cardinality with total
participation of an entity

4. Binary Relationship with n: 1 cardinality

5.Binary relationship with N:M cardinality

05

CO2 | L2

Tk hhd All the Best*********

Page 11 of 11

