
Page 1 of 12 
 

 
(Affiliated to University of Mumbai) 

Branch:  CSE(IoT&CSIBCT) 

Year/ Semester:  SE/III 

Time: 03 hours 

Note:  1. All questions are compulsory. 

           2. Figures to right indicate full marks. 

           3. Assume suitable data wherever necessary. 

Marks 

Q. 

1 

Attempt any FOUR. (All questions carry equal marks) 20 

A. Differentiate between linear and nonlinear data structure. 

Point Linear DS Non-linear DS 

Structure Sequential Hierarchical/Network 

Traversal Single-level Multi-level 

Examples 
Array, Stack, Queue, Linked 

List 
Tree, Graph 

Memory Contiguous/linked Non-contiguous 

Implementation Easy Complex 
 

05 

B. Construct B tree of order 5 using following elements      

7,11,1,20,5,15,18,9,12,37,34,8,42,24 

      [7] 

     /   \ 

[1, 5] [11, 15, 20] 

 

      [7, 15] 

      /   |    \ 

[1, 5] [9, 11] [18, 20] 

 

          [7, 15, 34] 

         /     |     |     \ 

[1, 5] [8,9,11,12] [18,20,24] [37,42] 

 

Rules of insertion 

explained – 1 mark 

Correct splits – 2 marks 

Final correct tree 

structure – 2 marks 

C. Explain adjacency list and adjacency matrix representation of graph 

with example. 
• Definition of 

adjacency matrix – 1 

mark 

• Example matrix – 1.5 

marks 

• Definition of 

adjacency list – 1 

mark 

• Example list – 1.5 

marks 

 

D. Explain binary search algorithm with example. • Binary Search principle 

– 1 mark 

• Algorithm/Pseudocode 



Page 2 of 12 
 

– 2 marks 

• Example  – 2 marks 

 

E. Apply fractional knapsack algorithm problem for the following. n = 6,        

p= (18, 5, 9, 10, 12, 7) w = (7, 2, 3, 5, 3, 2), Max sack capacity M = 13. 

Item  1 2 3 4 5 6 

profit 18 5 9  10 12 7 

weight 7 2 3 5 3 2 

P/W 2.57 2.5 3 2 4 3.5 

2. Sort in descending order  

Item  5 6 3 1 2 4 

profit 12 7 9 18 5  10 

weight 3 2 3 7 2 5 

P/W 4 3.5 3 2.57 2.5 2 

 

Step 3: Fill the Knapsack Greedily 

• Item 5: weight = 3 → remaining = 10 → profit = 12 

• Item 6: weight = 2 → remaining = 8 → profit = 12 + 7 = 19 

• Item 3: weight = 3 → remaining = 5 → profit = 19 + 9 = 28 

• Item 1: weight = 7 → only 5 units fit → take 5/7 fraction 

→ profit = 28 + (18 × 5/7) = 28 + 12.86 ≈ 40.86 

🔹 Maximum Profit ≈ 40.86 

 

• Compute p/w ratio – 2 

marks 

• Sort items – 1 mark 

• Pick items fractionally 

– 1 mark 

• Final max profit – 1 

mark 

F. Solve the sum of subsets problem using backtracking approach.  

Set = {1, 9, 7, 5, 18, 12, 20, 15}, n=8 and sum value = 35 

 

 Using backtracking, the valid subsets are: 

{1, 5, 9, 20} 

{1, 7, 12, 15} 

{5, 12, 18} 

{7, 9, 18} 

• Backtracking approach 

described – 2 marks 

• Recursive tree / 

tracking – 2 marks 

• One valid subset(s) 

result – 1 mark 

Q.2 Attempt any FOUR. (All questions carry equal marks)  

A. Write C program to implement Queue using singly linked list. 

#include <stdio.h> 

#include <stdlib.h> 

 

// Structure of a node 

struct Node { 

    int data; 

    struct Node* next; 

}; 

 

struct Node* front = NULL; 

struct Node* rear = NULL; 

 

// Function to insert element into the queue (Enqueue) 

void enqueue(int value) { 

    struct Node* newNode = (struct Node*)malloc(sizeof(struct Node)); 

• Node structure – 2 

marks 

• enqueue() – 3 marks 

• dequeue() – 3 marks 

• display() – 2 marks 



Page 3 of 12 
 

    newNode->data = value; 

    newNode->next = NULL; 

 

    if (front == NULL && rear == NULL) { 

        front = rear = newNode; 

    } else { 

        rear->next = newNode; 

        rear = newNode; 

    } 

    printf("%d inserted into the queue.\n", value); 

} 

 

// Function to remove element from the queue (Dequeue) 

void dequeue() { 

    if (front == NULL) { 

        printf("Queue is empty! Cannot dequeue.\n"); 

        return; 

    } 

    struct Node* temp = front; 

    printf("%d removed from the queue.\n", front->data); 

    front = front->next; 

 

    if (front == NULL) { 

        rear = NULL; 

    } 

    free(temp); 

} 

 

// Function to display the queue 

void display() { 

    if (front == NULL) { 

        printf("Queue is empty!\n"); 

        return; 

    } 

    struct Node* temp = front; 

    printf("Queue elements: "); 

    while (temp != NULL) { 

        printf("%d -> ", temp->data); 

        temp = temp->next; 

    } 

    printf("NULL\n"); 

} 

 

// Main function 

int main() { 

    int choice, value; 

 

    while (1) { 

        printf("\n--- Queue using Singly Linked List ---\n"); 



Page 4 of 12 
 

        printf("1. Enqueue\n"); 

        printf("2. Dequeue\n"); 

        printf("3. Display\n"); 

        printf("4. Exit\n"); 

        printf("Enter your choice: "); 

        scanf("%d", &choice); 

 

        switch (choice) { 

            case 1: 

                printf("Enter value to insert: "); 

                scanf("%d", &value); 

                enqueue(value); 

                break; 

            case 2: 

                dequeue(); 

                break; 

            case 3: 

                display(); 

                break; 

            case 4: 

                exit(0); 

            default: 

                printf("Invalid choice! Please try again.\n"); 

        } 

    } 

    return 0; 

} 

B. Explain B+ tree and construct B+ tree of order 5 using following 

elements. 

      6,10,1,21,5,15,19,9,12,38,35,7,43,25 

   Node capacity: 

• Internal nodes: Max M − 1 = 4 keys. 

• Leaf nodes: Max M − 1 = 4 keys. 

• Min keys per node: ⌈M/2⌉ − 1 = 2 (except root). 

Internal Nodes: 

                [15, 25] 

               /    |    \ 

          [1,5,6,10] [9,12,15,19,21] [25,35,38,43] 

 

Leaf Nodes (linked list): [1,5,6,10] → [9,12,15,19,21] → [25,35,38,43] 

 

 

• Explanation – 2 marks 

• Insertions – 4 marks 

• Final tree – 4 marks 

C. Explain doubly linked list node structure and write c code for doubly 

linked list for inserting node at the beginning, end of the list and 

display the list. 

#include <stdio.h> 

#include <stdlib.h> 

 

struct Node { 

• Node structure – 2 

marks 

• Insert at beginning – 2 

marks 

• Insert at end – 2 marks 

• Display – 2 marks 

• Explanation/commentin



Page 5 of 12 
 

    int data; 

    struct Node* prev; 

    struct Node* next; 

}; 

 

struct Node* head = NULL; 

void insertAtBeginning(int value) { 

    struct Node* newNode = (struct Node*)malloc(sizeof(struct Node)); 

    newNode->data = value; 

    newNode->prev = NULL; 

    newNode->next = head; 

 

    if (head != NULL) { 

        head->prev = newNode; 

    } 

    head = newNode; 

 

    printf("%d inserted at the beginning.\n", value); 

} 

void insertAtEnd(int value) { 

    struct Node* newNode = (struct Node*)malloc(sizeof(struct Node)); 

    newNode->data = value; 

    newNode->next = NULL; 

 

    if (head == NULL) { 

        newNode->prev = NULL; 

        head = newNode; 

        printf("%d inserted at the end.\n", value); 

        return; 

    } 

 

    struct Node* temp = head; 

    while (temp->next != NULL) { 

        temp = temp->next; 

    } 

 

    temp->next = newNode; 

    newNode->prev = temp; 

 

    printf("%d inserted at the end.\n", value); 

} 

void displayList() { 

    if (head == NULL) { 

        printf("List is empty.\n"); 

        return; 

    } 

 

    struct Node* temp = head; 

    printf("Doubly Linked List: "); 

g – 2 marks 



Page 6 of 12 
 

    while (temp != NULL) { 

        printf("%d <-> ", temp->data); 

        temp = temp->next; 

    } 

    printf("NULL\n"); 

} 

D. Describe AVL tree with all rotations. 

1. Right Rotation (LL Rotation) 

• Used when a node is inserted in the left subtree of the left 

child 

• Example: 

      30 

     / 

    20 

   / 

  10 

Rotation at 30: 

      20 

     /  \ 

    10   30 

 
2. Left Rotation (RR Rotation) 

• Used when a node is inserted in the right subtree of the right 

child 

• Example: 

  10 

    \ 

     20 

       \ 

        30 

 

Rotation at 10: 

     20 

    /  \ 

  10    30 

 
3. Left-Right Rotation (LR Rotation) 

• Used when a node is inserted in the right subtree of the left 

child 

• Example: 

      30 

     / 

    10 

      \ 

       20 

Step 1: Left Rotation at 10 

Step 2: Right Rotation at 30 

Final tree: 

      20 

• Definition – 2 marks 

• Left rotation – 2 marks 

• Right rotation – 2 

marks 

• LR rotation – 2 marks 

• RL rotation – 2 marks 



Page 7 of 12 
 

     /  \ 

   10    30 

 
 4. Right-Left Rotation (RL Rotation) 

• Used when a node is inserted in the left subtree of the right 

child 

• Example: 

   10 

     \ 

      30 

     / 

    20 

Step 1: Right Rotation at 30 

Step 2: Left Rotation at 10 

Final tree: 

     20 

    /  \ 

  10    30 

 

E. Construct Minimum cost spanning tree (MST) using Kruskal’s and 

Prim’s method 

Kruskal algoritms: 

1. Sort edges by weight (ascending): 

2. Now pick edges in order, avoiding cycles: 

• Pick B–C (2) → connect B and C. 

• Pick C–F (2) → connect F into component {B,C,F}. 

• Pick C–D (3) → connect D → component {B,C,F,D}. 

• Pick D–E (3) → connect E → component {B,C,F,D,E}. 

• Next candidate F–E (3) would form a cycle among 

{B,C,F,D,E} → skip. 

• Next pick A–B (4) → connects A to the component. 

3. Selected edges (Kruskal): B–C (2), C–F (2), C–D (3), D–E 

(3), A–B (4) 

Total weight = 2 + 2 + 3 + 3 + 4 = 14 

 

Prims algorithms:  

Start at C. At each step pick the smallest weight edge crossing the 

current tree boundary. 

Initial tree: {C} 

Edges out of C: B(2), F(2), D(3), A(4), E(4) 

1. Pick B–C (2) → tree {C,B} 

New available edges (from tree): C–F(2), C–D(3), A–B(4), A–

• Graph/example – 2 

marks 

• Kruskal steps – 3 marks 

• Prim steps – 3 marks 

• Final MST cost – 2 

marks 



Page 8 of 12 
 

C(4), C–E(4) 

2. Pick C–F (2) → tree {C,B,F} 

New available edges: C–D(3), D–E(3), F–E(3), A–B(4), A–

C(4), C–E(4) 

3. Pick C–D (3) → tree {C,B,F,D} 

New edges: D–E(3), F–E(3), A–B(4), A–C(4), C–E(4) 

4. Pick D–E (3) → tree {C,B,F,D,E} 

(F–E would create cycle — skip) 

5. Finally pick A–B (4) (or A–C(4)) → tree includes A 

Selected edges (Prim): C–B (2), C–F (2), C–D (3), D–E (3), A–B (4) 

Total weight = 14 (same as Kruskal) 

 

 

F. What is graph coloring problem? Apply graph coloring technique and 

find chromatic no. of a graph. 

 

 
Step-by-Step Coloring of Graph 

Your graph has 8 nodes: a, b, c, d, e, f, g, h: 

1. Start with node g (most connected: degree 5) 

• Assign Color 1 to g 

2. Nodes adjacent to g: e, f, a, b, c 

• Assign: 

• Color 2 to e 

• Color 3 to f 

• Color 2 to a (not adjacent to e) 

• Color 3 to b (not adjacent to f) 

•    Color 4 to c (adjacent to b and g) 

3. 

• Definition – 2 marks 

• Steps of coloring – 5 

marks 

• Chromatic number – 3 

marks 



Page 9 of 12 
 

 
   

Q.3 Attempt any FOUR  

A. Explain BFS technique and write an algorithm of BFS in detail. 

BFS (Breadth First Search) 

• BFS is a graph traversal technique. 

• It visits all the vertices level by level. 

• It uses a queue (FIFO) data structure. 

• Works for connected and disconnected graphs. 

• Useful for finding shortest path in unweighted graphs, cycle 

detection, etc. 

️ BFS Algorithm (Adjacency List) 

BFS(G, start): 

1. Create a boolean array visited[V] initialized to false 

2. Create an empty queue Q 

3. Mark visited[start] = true and enqueue start into Q 

4. While Q is not empty: 

      a. u = Dequeue Q 

      b. Print u (or process it) 

      c. For every neighbor v of u: 

            if visited[v] == false: 

                 visited[v] = true 

                 Enqueue v into Q 

Time Complexity: O(V + E) 

 

• Definition & Concept 

of BFS  1 mark 

• Explanation of 

working/technique

 1.5 marks 

• BFS algorithm 2 

marks 

• Example 0.5 mark 

B. Explain graph traversal techniques in detail. 

Graph traversal = visiting all vertices systematically. Two main 

techniques: 

 a) BFS (Breadth First Search) 

• Uses Queue 

• Level-wise traversal 

• Best for shortest path (unweighted) 

• Definition of hashing 1 

mark 

• Explanation of hashing 

need/use 0.5 mark 

• Static hashing 1 mark 

• Collision resolution 

techniques 1.5 marks 



Page 10 of 12 
 

Example Order: A → B → C → D → E 

 b) DFS (Depth First Search) 

• Uses Stack (or Recursion) 

• Explores as deep as possible before backtracking 

 

• Example 1 mark 

C. Apply Linear Probing, Quadratic Probing on following 

data:89,18,49,58,69. The hash table size m = 10 and the hash function 

h(k) = k mod 10. 

• Linear Probing  

Formula: (h(k) + i) mod m 

Key h(k) Position 

89 9 9 

18 8 8 

49 9 9 (occupied) → 0 

58 8 8 (occupied) → 9 (occupied) → 0 (occupied) → 1 

69 9 9,0,1,2 → 2 

• Quadratic Probing 

Formula: (h(k) + i²) mod m 

 

Key h(k) Position 

89 9 9 

18 8 8 

49 9 9 → (9 + 1²)%10 = 0 

58 8 8 → (8 + 1²)=9 → (8+2²)=12%10=2 

69 9 9 → 0 → (9+2²)=13%10=3 
 

•  

D. Define hashing and explain different types of hashing techniques with 

example. 

Hashing 

A technique to store and retrieve data in constant time (O(1)) using 

a hash function to compute an index. 

️ Hash Function 

h(k) = k mod m 

️ Types of Hashing 

1. Division Method 

h(k) = k mod m 

Example: key=19, m=10 → 19 mod 10 = 9 

2. Multiplication Method 

h(k) = floor( m * (k * A mod 1) ) 

Example: A=0.618, m=10 

3. Mid-square Method 

Square the key and take middle digits. 

4. Folding Method 

Break key and sum parts. 

Collision Resolution 

• Linear Probing 

• Quadratic Probing 

• Definition of hashing 1 

mark 

• Explanation of hashing 

need/use 0.5 mark 

• Static hashing 1 mark 

• Collision resolution 

techniques 

(LP/QP/Chaining)

 1.5 marks 

• Example/application 1 

mark 

 



Page 11 of 12 
 

• Double Hashing 

• Separate Chaining 

 

E. Find Dijkstra’s shortest path from vertex 0 for following graph . 

 
Iteration Steps 

1.  Start at 0: 

•  0 → 1 = 10 → update distance of 1 to 10 

•  0 → 4 = 3 → update distance of 4 to 3 

2.  Visit 4 (min distance = 3): 

•  4 → 3 = 2 → update distance of 3 to 5 

•  4 → 1 = 1 → 3 + 1 = 4 → update distance of 1 to 4 

3.  Visit 1 (min distance = 4): 

•  1 → 2 = 5 → 4 + 5 = 9 → update distance of 2 to 9 

4.  Visit 3 (min distance = 5): 

•  No outgoing edges 

5.        Visit 2 (min distance = 9): 

•  2 → 3 = 7 → already visited, no update 

6.  Vertex 5 remains unreachable 

 

• Initial table setup 

(distance & visited 

array) 1 mark 

• Step-by-step relaxation 

process 2 marks 

• Final shortest path 

values1.5 marks 

• Diagram/justification

 0.5 mark 

F. Explain 4*4 queen problem using backtracking. 

Place 4 queens on a 4×4 chessboard such that no two queens attack 

each other. 

️ Constraints: 

• No two queens in the same row, column, or diagonal. 

Backtracking Idea: 

1. Place queen in row 1. 

2. Go to next row. 

3. Try safe column. 

• Problem definition

 0.5 mark 

• Backtracking concept1 

mark 

• Steps/algorithm 

explanation 2 marks 

• Valid 

solution/placement 

diagram 1.5 marks 



Page 12 of 12 
 

4. If no column is safe → backtrack. 

5. Continue until 4 queens placed. 

Solution Matrix  

. Q . .                          

. . . Q 

Q . . . 

. . Q . 

Another solution  

. . Q . 

Q . . . 

. . . Q 

. Q . . 

 


