FSEWITH EDUC
NAAC A+

(Affiliated to University of Mumbai)

Branch: CSE(IoT&CSIBCT)

Year/ Semester: SE/II

Time: 03 hours

Note: 1. All questions are compulsory.

2. Figures to right indicate full marks. Marks
3. Assume suitable data wherever necessary.
Q. | Attempt any FOUR. (All questions carry equal marks) 20
1
A. | Differentiate between linear and nonlinear data structure. 05
|P0int HLinear DS HNon-linear DS ‘
|Structure HSequential HHierarchical/N etwork‘
|Traversal HSingle—level HMulti—level ‘
Examples A}‘r ay, Stack, Queue, Linked Tree, Graph
List
|Memory HContiguous/linked HNon-contiguous |
|ImplementationHEasy HComplex |
B. | Construct B tree of order 5 using following elements
7,11,1,20,5,15,18,9,12,37,34,8,42,24 Rules of insertion
[7] explained — 1 mark
/\ Correct splits — 2 marks
[1,5][11, 15, 20] Final correct tree
structure — 2 marks
[7, 15]
/N
[1,5]19, 11][18, 20]
[7, 15, 34]
/N
[1,5][8,9,11,12][18,20,24] [37,42]
C. | Explain adjacency list and adjacency matrix representation of graph e Definition of
with example. adjacency matrix — 1
mark
e Example matrix — 1.5
marks
¢ Definition of
adjacency list — 1
mark
e Example list— 1.5
marks
D. | Explain binary search algorithm with example. ¢ Binary Search principle
— 1 mark
o Algorithm/Pseudocode

Page 1 of 12

— 2 marks
e Example — 2 marks

Apply fractional knapsack algorithm problem for the following. n =6, | e Compute p/w ratio — 2
=(18,5,9,10,12,7Yw=(7,2, 3,5, 3, 2), Max sack capacity M = 13. marks

Item 1 2 3 4 5 6 e Sort items — 1 mark

profit 18 5 9 10 12 7 o Pick items fractionally

weight | 7 2 3 5 3 2 — 1 mark

P/W 2.57 25 3 2 4 35 e Final max profit — 1
2. Sort in descending order

Item 5 6 3 1 2 4

profit 12 7 9 18 5 10

weight | 3 2 3 7 2 5

P/W 4 3.5 3 2.57 2.5 2

Step 3: Fill the Knapsack Greedily
e Item S: weight = 3 — remaining = 10 — profit =12
e Item 6: weight =2 — remaining = 8 — profit=12+7=19
e Item 3: weight =3 — remaining =5 — profit=19 + 9 =28
e Item 1: weight =7 — only 5 units fit — take 5/7 fraction
— profit =28 + (18 x 5/7) =28 + 12.86 =~ 40.86
€ Maximum Profit = 40.86

e Backtracking approach
described — 2 marks

e Recursive tree /
tracking — 2 marks

Solve the sum of subsets problem using backtracking approach.
Set={1,9,7,5, 18, 12,20, 15}, n=8 and sum value = 35

Using backtracking, the valid subsets are:

{1,5,9,20} ® One valid subset(s)
{1,7,12, 15} result — 1 mark

{5, 12, 18}

{7,9, 18}

Attempt any FOUR. (All questions carry equal marks)

Write C program to implement Queue using singly linked list. ¢ Node structure — 2
#include <stdio.h> marks

#include <stdlib.h> e enqueue() — 3 marks
e dequeue() — 3 marks

// Structure of a node e display() — 2 marks

struct Node {
int data;
struct Node* next;

55

struct Node* front = NULL;
struct Node* rear = NULL;

// Function to insert element into the queue (Enqueue)
void enqueue(int value) {
struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));

Page 2 of 12

newNode->data = value;
newNode->next = NULL;

if (front == NULL && rear == NULL) {
front = rear = newNode;

} else {
rear->next = newNode;
rear = newNode;

}

printf("%d inserted into the queue.\n", value);

}

// Function to remove element from the queue (Dequeue)
void dequeue() {
if (front ==NULL) {
printf("Queue is empty! Cannot dequeue.\n");
return,;
b
struct Node* temp = front;
printf("%d removed from the queue.\n", front->data);
front = front->next;

if (front ==NULL) {
rear = NULL;
}

free(temp);

}

// Function to display the queue
void display() {
if (front ==NULL) {
printf("Queue is empty!\n");
return,;
}
struct Node* temp = front;
printf("Queue elements: ");
while (temp != NULL) {
printf("%d -> ", temp->data);
temp = temp->next;
}
printf("NULL\n");

}

// Main function
int main() {
int choice, value;

while (1) {
printf("\n--- Queue using Singly Linked List ---\n");

Page 3 of 12

printf("1. Enqueue\n");
printf("2. Dequeue\n");
printf("3. Display\n");
printf("4. Exit\n");
printf("Enter your choice: ");
scanf("%d", &choice);

switch (choice) {

case 1:
printf("Enter value to insert: ");
scanf("%d", &value);
enqueue(value);
break;

case 2:
dequeue();
break;

case 3:
display();
break;

case 4:
exit(0);

default:
printf("Invalid choice! Please try again.\n");

}
b

return 0;

}

Explain B+ tree and construct B+ tree of order 5 using following
elements.

6,10,1,21,5,15,19,9,12,38,35,7,43,25
[J Node capacity:

o Internal nodes: Max M — 1 =4 keys.

e Leafnodes: Max M — 1 =4 keys.

e Min keys per node: [M/2] — 1 =2 (except root).
Internal Nodes:

[15, 25]
A
[1,5,6,10][9,12,15,19,21] [25,35,38,43]

Leaf Nodes (linked list): [1,5,6,10] — [9,12,15,19,21] — [25,35,38,43]

e Explanation — 2 marks
e Insertions — 4 marks
e Final tree — 4 marks

Explain doubly linked list node structure and write ¢ code for doubly

linked list for inserting node at the beginning, end of the list and
display the list.

#include <stdio.h>

#include <stdlib.h>

struct Node {

® Node structure — 2
marks

e [nsert at beginning — 2
marks

e [nsert at end — 2 marks

e Display — 2 marks

e Explanation/commentin

Page 4 of 12

55

int data;
struct Node* prev;
struct Node* next;

struct Node* head = NULL;
void insertAtBeginning(int value) {

}

struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));

newNode->data = value;
newNode->prev = NULL;
newNode->next = head;

if (head !=NULL) {
head->prev = newNode;

}

head = newNode;

printf("%d inserted at the beginning.\n", value);

void insertAtEnd(int value) {

}

struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
newNode->data = value;
newNode->next = NULL;

if (head == NULL) {
newNode->prev = NULL;
head = newNode;
printf("%d inserted at the end.\n", value);
return,;

}

struct Node* temp = head;
while (temp->next != NULL) {
temp = temp->next;

b

temp->next = newNode;
newNode->prev = temp;

printf("%d inserted at the end.\n", value);

void displayList() {

if (head == NULL) {
printf("List is empty.\n");
return,;

}

struct Node* temp = head;
printf("Doubly Linked List: ");

g — 2 marks

Page 5 of 12

while (temp !=NULL) {
printf("%d <-> ", temp->data);
temp = temp->next;

b
printf("NULL\n");

}

Describe AVL tree with all rotations.
1. Right Rotation (LL Rotation)
e Used when a node is inserted in the left subtree of the left
child
o Example:
30
/
20
/
10
Rotation at 30:
20
/\
10 30

2. Left Rotation (RR Rotation)
e Used when a node is inserted in the right subtree of the right
child
e Example:

Rotation at 10:
20
/\
10 30

3. Left-Right Rotation (LR Rotation)
e Used when a node is inserted in the right subtree of the left
child
e Example:

20
Step 1: Left Rotation at 10
Step 2: Right Rotation at 30
Final tree:

20

e Definition — 2 marks

e [eft rotation — 2 marks

o Right rotation — 2
marks

e LR rotation — 2 marks

o RL rotation — 2 marks

Page 6 of 12

/\
10 30

4. Right-Left Rotation (RL Rotation)
e Used when a node is inserted in the left subtree of the right
child
e Example:
10
\
30
/
20
Step 1: Right Rotation at 30
Step 2: Left Rotation at 10
Final tree:
20
/\
10 30

Construct Minimum cost spanning tree (MST) using Kruskal’s and
Prim’s method

Kruskal algoritms:
Sort edges by weight (ascending):
Now pick edges in order, avoiding cycles:
Pick B-C (2) — connect B and C.
Pick C—F (2) — connect F into component {B,C,F}.
Pick C-D (3) — connect D — component {B,C,F,D}.
Pick D-E (3) — connect E — component {B,C,F,D,E}.
e Next candidate F-E (3) would form a cycle among
{B,C,F,D,E} — sKkip.
e Next pick A-B (4) — connects A to the component.
. Selected edges (Kruskal): B-C (2), C-F (2), C-D (3), D-E
(3), A-B (4)
Total weight=2+2+3+3+4=14

e o o o M~

Prims algorithms:
Start at C. At each step pick the smallest weight edge crossing the
current tree boundary.
Initial tree: {C}
Edges out of C: B(2), F(2), D(3), A(4), E(4)
1. Pick B-C (2) — tree {C,B}
New available edges (from tree): C—F(2), C—D(3), A—B(4), A—

o Graph/example — 2
marks

o Kruskal steps — 3 marks

e Prim steps — 3 marks

e Final MST cost — 2
marks

Page 7 of 12

C(4),C-E4)
2. Pick C-F (2) — tree {C,B,F}
New available edges: C-D(3), D-E(3), F-E(3), A-B(4), A—
C(4), C-E4)
3. Pick C-D (3) — tree {C,B,F,D}
New edges: D-E(3), F-E(3), A-B(4), A—C(4), C-E(4)
4. Pick D-E (3) — tree {C,B,F,.D,E}
(F-E would create cycle — skip)
5. Finally pick A-B (4) (or A-C(4)) — tree includes A
Selected edges (Prim): C-B (2), C-F (2), C-D (3), D-E (3), A-B (4)
Total weight = 14 (same as Kruskal)

What is graph coloring problem? Apply graph coloring technique and
find chromatic no. of a graph.

Step-by-Step Coloring of Graph
Your graph has 8 nodes: a, b, ¢, d, e, f, g, h:
1. Start with node g (most connected: degree 5)
e AssignColorltog
2. Nodes adjacentto g: e, f, a, b, c
e Assign:
e Color2toe
e Color3tof
e Color 2 to a (not adjacent to e)
e Color 3 to b (not adjacent to f)
e Color 4 to c (adjacent to b and g)

e Definition — 2 marks

e Steps of coloring — 5
marks

e Chromatic number — 3
marks

Page 8 of 12

Vertex Color
g 1
e 2
f 3
a 2
b 3
c 4
d 3

Chromatic Number = 4

Attempt any FOUR

Explain BFS technique and write an algorithm of BFS in detail.
BFS (Breadth First Search)

e BFS is a graph traversal technique.
o It visits all the vertices level by level.
e Ituses a queue (FIFO) data structure.
e Works for connected and disconnected graphs.
o Useful for finding shortest path in unweighted graphs, cycle
detection, etc.
"] BFS Algorithm (Adjacency List)
BFS(G, start):
1. Create a boolean array visited[V] initialized to false
2. Create an empty queue Q
3. Mark visited[start] = true and enqueue start into Q
4. While Q is not empty:
a. u= Dequeue Q
b. Print u (or process it)
c. For every neighbor v of u:
if visited[v] == false:
visited[v] = true
Enqueue v into Q
Time Complexity: O(V + E)

e Definition & Concept
of BFS 1 mark
e Explanation of
working/technique
1.5 marks
¢ BFS algorithm 2
marks

e Example 0.5 mark

Explain graph traversal techniques in detail.
Graph traversal = visiting all vertices systematically. Two main
techniques:
a) BFS (Breadth First Search)
e Uses Queue
o Level-wise traversal
o Best for shortest path (unweighted)

e Definition of hashing 1
mark

e Explanation of hashing
need/use 0.5 mark

o Static hashing 1 mark

e Collision resolution
techniques 1.5 marks

Page 9 of 12

Example Order: A >B —>C—>D—>E
b) DFS (Depth First Search)
e Uses Stack (or Recursion)
o Explores as deep as possible before backtracking

e Example 1 mark

Apply Linear Probing, Quadratic Probing on following
data:89,18.,49,58.,69. The hash table size m = 10 and the hash function
h(k) = k mod 10.

e Linear Probing
Formula: (h(k) + 1) mod m

Key h(k) Position

89 9 9

18 8 8

49 9 9 (occupied) — 0

58 8 8 (occupied) — 9 (occupied) — 0 (occupied) — 1
69 9 90,12—-2

e Quadratic Probing
Formula: (h(k) + i?) mod m

Key h(k) Position

89 9 9

18 8 8

49 9 9-509+1»%10=0

58 8 88— (8+1%)=9 — (8+2%)=12%10=2
69 9 9—0—(9+22)=13%10=3

Define hashing and explain different types of hashing techniques with
example.
Hashing
A technique to store and retrieve data in constant time (O(1)) using
a hash function to compute an index.
"] Hash Function
h(k) =k mod m
'] Types of Hashing
1. Division Method
h(k) =k mod m
Example: key=19, m=10 — 19 mod 10 =9
2. Multiplication Method
h(k) = floor(m * (k * A mod 1))
Example: A=0.618, m=10
3. Mid-square Method
Square the key and take middle digits.
4. Folding Method
Break key and sum parts.
Collision Resolution
e Linear Probing
e Quadratic Probing

o Definition of hashing 1
mark

¢ Explanation of hashing
need/use 0.5 mark

e Static hashing 1 mark

o Collision resolution
techniques
(LP/QP/Chaining)

1.5 marks

e Example/application 1

mark

Page 10 of 12

e Double Hashing
e Separate Chaining

Find Dijkstra’s shortest path from vertex 0 for following graph .

10/ 0
SN
2

1
1

2 3
7

[teration Steps

1. Start at 0:
. 0 — 1 =10 — update distance of 1 to 10
. 0 — 4 =3 — update distance of 4 to 3

Visit 4 (min distance = 3):
4 — 3 =2 — update distance of 3 to 5

. 4 —-1=1—3+1=4 — update distance of 1 to 4
3. Visit 1 (min distance = 4):
. 1 >2=5—>4+5=9 — update distance of 2 to 9
4. Visit 3 (min distance = 5):
. No outgoing edges
5. Visit 2 (min distance = 9):
. 2 — 3 =7 — already visited, no update
6. Vertex 5 remains unreachable
Vertex Distance Path
]]]
T 4 0241
2 9 0242122
3 5 0=>4->3
4 5] 0—=>4

5 w =

o Initial table setup
(distance & visited
array) 1 mark

o Step-by-step relaxation
process 2 marks

o Final shortest path
values1.5 marks

e Diagram/justification

0.5 mark

Explain 4*4 queen problem using backtracking.

Place 4 queens on a 4x4 chessboard such that no two queens attack
each other.

"l Constraints:

e No two queens in the same row, column, or diagonal.
Backtracking Idea:

1. Place queen in row 1.

2. Go to next row.

3. Try safe column.

o Problem definition
0.5 mark

o Backtracking conceptl
mark

o Steps/algorithm
explanation 2 marks

e Valid
solution/placement
diagram 1.5 marks

Page 11 of 12

4. If no column is safe — backtrack.

5. Continue until 4 queens placed.

Solution Matrix

.Q..
...Q
Q...
..Q.

Another solution
.Q.
Q...

.Q

Q..

Page 12 of 12

