, End Semester Examination (R-24) SH
(Affiliated to Ur:{:é¥sity of Mumbai) 2025
Answer Key with marking scheme
Branch: Electronics and Computer Science Course: Computer Organization
Engineering and Architecture
Year/ Semester: SE /111 Course code: ECC305
Time: 03 hours Marks: 80

Marks

Q. 1 | Attempt any FOUR. (All questions carry equal marks)

A. | To multiply —7 x -3 using Booth’s algorithm, we first represent both numbers in 5-bit two’s 5
complement (to avoid overflow): =7 = 11001 and -3 = 11101.

With the initial setup A = 00000, Q =11101, Q-1 =0, and M = 11001,

we run five iterations of Booth’s rules.

In each step, we check (Q0, Q—1):if 10 > A=A -M, if 01 -» A=A + M, otherwise no
operation, followed by an arithmetic right shift of (A, Q, Q-1).

After completing the 5 iterations, the final combined value of (A,Q) is 00010101, which
equals decimal 21.

Thus, Booth’s algorithm correctly produces the result =7 x —3 = 21.

B. RISC (Reduced Instruction Set CISC (Complex Instruction 5
Feature
Computer) Set Computer)

Instruction Small, simple, limited instructions Large, (fomplex, versatile
Set instructions
Instruction .)
Length Fixed-length (usually) Variable-length
Execution Most instructions execute in 1 clock Instructions may take multiple
Time cycle cycles
Design Hardware is simpler, complexity =~ Hardware is complex,
Philosophy handled by software (compiler) instructions handle more work
Registers Large number of general-purpose Fewer'registers, more memory

registers operations
Memory Only load/store instructions access Many instructions can directly
Access memory access memory

o e Easy to implement and very Harder to implement due to
Pipelining efficient instruction complexity
. Larger (since more simple Smaller (fewer complex

Code Size . : .) .

instructions are needed) instructions achieve same task)

Examples ARM, MIPS, SPARC, RISC-V x86, Intel 8086, VAX

C. | Multithreading is the ability of a CPU to execute multiple threads (smaller units of a
process) concurrently within a single program or process. It improves the efficiency of CPU
utilization by allowing different threads to run in parallel, especially on multi-core processors.
Each thread shares the same process resources such as memory, code, and files, but executes
independently. Multithreading enhances performance, responsiveness, and resource sharing,
making it useful in applications like web servers, games, and real-time systems. However, it
also requires careful synchronization to avoid issues like race conditions and deadlocks.

Page 1 0of 16

1. Process Control Block (PCB)
A Process Control Block (PCB) is a data structure maintained by the operating system to
store all the information about a process. Whenever a process is created, the OS generates a
PCB, and when the process terminates, the PCB is deleted. The PCB acts as the “identity
card” of the process and helps the OS in process management and scheduling.
Contents of PCB:

o Process ID (PID): Unique identifier of the process.

e Process State: Current state (new, ready, running, waiting, terminated).

¢ Program Counter: Address of the next instruction to be executed.

e CPU Registers: Contents of registers when the process is suspended.

e Memory Management Information: Base and limit registers, page tables, or

segment tables.

e Accounting Information: CPU usage, job number, time limits.

e I/O Status Information: List of I/O devices allocated and files opened.
Thus, the PCB is crucial for context switching, as it saves and restores the process information
when switching between processes.

Flynn’s Classification
Michael J. Flynn classified computer architectures in 1966 based on the number of instruction
streams and data streams that a computer can handle simultaneously. It is known as Flynn’s
Taxonomy.
The four categories are:
1. SISD (Single Instruction, Single Data):
o One instruction stream, one data stream.
o Traditional sequential computer (e.g., older PCs, uniprocessors).
2. SIMD (Single Instruction, Multiple Data):
o One instruction operates on multiple data streams simultaneously.
o Suitable for parallel processing and vector operations.
o Used in graphics processing, multimedia, scientific computations.
o Example: GPUs, vector processors.
3. MISD (Multiple Instruction, Single Data):
o Multiple instructions operate on the same data stream.
o Rare in practice, used in fault-tolerant systems or pipeline structures.
4. MIMD (Multiple Instruction, Multiple Data):
o Multiple processors execute different instructions on different data streams.
o Widely used in modern multiprocessor and distributed systems.
o Examples: Multicore processors, clusters, supercomputers.
Summary:
e SISD — Uniprocessor systems.
e SIMD — Parallel data processing.
¢ MISD — Rare, specialized systems.
e MIMD — General-purpose multiprocessors and distributed systems.

Superscalar Architecture is a type of computer processor design that allows the execution of
multiple instructions per clock cycle by using several execution units in parallel. Unlike a
scalar processor, which fetches and executes one instruction at a time, a superscalar
processor can fetch, decode, and dispatch two or more instructions simultaneously,
provided they are independent and do not cause conflicts. To achieve this, it uses features
like instruction-level parallelism (ILP), multiple pipelines, out-of-order execution, and
advanced scheduling. Superscalar processors improve performance without increasing the

Page 2 of 16

clock speed, making them widely used in modern CPUs (e.g., Intel Pentium, ARM
processors). However, hardware complexity, dependency checking, and instruction
scheduling make design more challenging.

Attempt any FOUR. (All questions carry equal marks)

Below is a short explanation of each policy followed by step-by-step application (frame
contents after each reference and whether a page fault occurred). Page frame size = 3.

Reference string:
2,3,4,2,1,3,7,5,4,3,2,3,1
Policies (brief):

e FIFO (First-In First-Out): evict the page that entered frames earliest (oldest).
o LRU (Least Recently Used): evict the page that was least recently referenced (uses

recency).

e Optimal: evict the page whose next use is farthest in the future (or not used again);
produces the minimum possible faults (requires future knowledge).

1) FIFO (10 page faults)

Ref Frames (after) Fault?

2 [2,-,-] Yes

3 [2,3,-] Yes

4 [2,3,4] Yes

2 [2,3,4] No

1 [1,3,4] Yes (evict 2)
3 11,3,4] No

7 [1,7,4] Yes (evict 3)
5 [1,7,5] Yes (evict 4)
4 [4,7,5] Yes (evict 1)
3 [4,3,5] Yes (evict 7)
2 [4,3,2] Yes (evict 5)
3 [4,3,2] No

1 [1,3,2] Yes (evict 4)

Total FIFO page faults = 10.

2) LRU (11 page faults)

Ref Frames (after, MRU at right) Fault?

2] =12, -]
[2a 35 ']
[2, 3, 4]

[2, 1, 3] (evict 4)
[1, 3, 7] (evict 2)
[3,7,5] (evict 1)
[7,5, 4] (evict 3)
[5, 4, 3] (evict 7)

W A O 9 W = N B W DN

Yes
Yes
Yes

[3, 4, 2] (2 becomes most recent) No
[4, 2, 1] (evict least recent=3) Yes

Yes
Yes
Yes
Yes
Yes

Page 3 of 16

2[4, 3,2] (evict 5) Yes

3 4,2, 3] No (3 becomes most recent)
1 [2,3, 1] (evict4) Yes

Total LRU page faults = 11.

3) Optimal (8 page faults)

Ref gfi‘;‘;’s Fault? Evicted (if any)
2 [2,-,-] Yes —
3 [2,3,-] Yes —
4 [2,3,4] Yes —
2 [2,3,4 No —

evict 2 (next uses: 2— index 10, 3— index 5, 4— index 8 — 2 is not
1 [1,3,4] Yes the farthest? actually 2 used later, but 2 was chosen under capacity;

final optimal choice evicts 2 here)
3 [1,3,4] No
evict 4 (4’s next use index 8 vs 1 not used until 12, 3 used at 9 =

7 [1,3,7] Yes evict 4)

5 [1,3,5] Yes evict7 (7 notused again)

4 [1,3,4] Yes evict5 (5 notused again)

3 [1,3,4] No

2 [2,3,4] Yes evict1 (1 nextuse at position 12, others used earlier — evict 1)
3 [2,3,4] No

1 [2,3,1] Yes evict4 (4 not needed again)

Total Optimal page faults = 8.

Summary
e FIFO faults = 10
e LRU faults=11
e Optimal faults = 8 (best possible)

1. IEEE 754 Floating Point Standard
IEEE 754 is the standard for representing floating-point numbers in binary. It has Single
Precision (32-bit) and Double Precision (64-bit) formats.
Single Precision (32-bit)
¢ 1 bit: Sign (S) — 0 for positive, 1 for negative
e 8 bits: Exponent (E) — biased by 127
e 23 bits: Mantissa (M) — fractional part of the normalized number
Value formula:

[
(-D”S \times 1.M \times 2" {E-127}

]

Double Precision (64-bit)
e 1 bit: Sign (S)
e 11 bits: Exponent (E) — biased by 1023
e 52 bits: Mantissa (M)

Page 4 of 16

Value formula:
[
(-D)"S \times 1.M \times 2" {E-1023}

]

2. Conversion Steps
1. Convert number to binary.
2. Normalize it to form 1.M X 2*E.
3. Calculate biased exponent:
o Single: (E {biased} =E + 127)
o Double: (E_{biased} = E + 1023)
4. Write sign, exponent, and mantissa in binary.

3. Represent Numbers
a) 28.75
1. Convert to binary:
[
28 {10} =11100_2,\quad 0.75 =0.11_2 \Rightarrow 28.75=11100.11 2
]

2. Normalize:

[
11100.11 =1.110011 \times 24

]
Exponent (biased):
Single: (4 + 127 =131 = 10000011 _2)
Double: (4 + 1023 = 1027 = 10000000011 _2)
Mantissa: take fractional part after 1. — 11001100000000000000000 (23 bits for
single)
5. IEEE 754 Representation
Format Sign Exponent = Mantissa

Ao o W

Single
(32-bit) 0 10000011 11001100000000000000000
zzl_lgllte) 0 10000000011 11001100
b) 12.25
1. Binary:

[
12_{10} = 1100 2, \quad 0.25 = 0.01 2 \Rightarrow 12.25 = 1100.01 2

]

2. Normalize:

[
1100.01 =1.10001 \times 2”3

]

Exponent (biased):

Single: (3 + 127 =130 = 10000010_2)

Double: (3 + 1023 = 1026 = 10000000010 _2)

Mantissa: 10001000000000000000000 (23 bits for single)
IEEE 754 Representation

L. e

Page 5 of 16

Format Sign Exponent = Mantissa

Single 10000010 10001000000000000000000
(32-bit)
?63‘_153 0 10000000010 10001000

1. Direct Mapped Cache — Concept
In Direct Mapped Cache, each block of main memory maps to exactly one cache line. The
physical address is split into three fields:
1. Block Offset (Word within Block) — identifies a word within a block.
2. Index (Cache Line) — selects which cache line the block maps to.
3. Tag —identifies which memory block is stored in that cache line.
Physical Address = [Tag][Index][Block Offset]

2. Given Data
e Main memory size = 4 GB — 23 bytes
e Cache size =1 MB — 2% bytes
e Block size =4 KB — 2! bytes
e Word size = 1 byte

3. Determine Number of Blocks
Cache Blocks = Cache Size / Block Size

Cache blocks =22%/2!2 = 28 =256 blocks in cache
Memory Blocks = Main Memory / Block Size
Memory blocks = 2°%/2'2 = 2% blocks in memory

4. Address Bits Split
Physical Address = 32 bits
Step 1: Block Offset

e Block size = 2'?bytes — 12 bits for block offset

o These 12 bits identify the byte/word inside the block.
Step 2: Index

e Cache has 256 blocks — (2%)— 8 bits for index

o These 8 bits select which cache line the block maps to.
Step 3: Tag

¢ Remaining bits = 32 — (12 + 8) = 12 bits — Tag

e Tag uniquely identifies which memory block is currently in the selected cache line.
Address split:

Field Bits Function
Tag 12 Identify memory block
Index 8 Select cache line

Block Offset 12 Identify word within block

5. Tag Directory Size
o Tag directory stores tag for each cache line.
e Cache has 256 lines, each storing a 12-bit tag
e Tag directory size=256x12 bits=3072 bits=384bytes

Page 6 of 16

o Direct mapped cache maps each memory block to a unique cache line.
o Physical address split: 12-bit tag, 8-bit index, 12-bit block offset.

o Tag directory size: 384 bytes.

Round Robin with time quantum 2 Let’s solve step by step.

Given Data
Process Arrival Time Burst Time

P1 0 8
P2 1 4
P3 2 2
P4 3 1
P5 4 3
P6 5 2

Time Quantum (TQ) =2

Step 1: Round Robin Execution Table
We simulate time step by step:

¢ Ready Queue updates as processes arrive.

e Each process executes max 2 units per turn.
Gantt Chart

Time Process
0-2 Pl
24 P2
46 P3
6-7 P4
7-9 PS5
9-11 P6
11-13 P1
13-15 P2
15-16 P5
16-17 P1

Step-by-step execution:

1. 0-2: P1 executes 2 (remaining 6)

2. 2-4: P2 executes 2 (remaining 2)

3. 4-6: P3 executes 2 (remaining 0, completes at 6)

4. 6-7: P4 executes 1 (remaining 0, completes at 7)

5. 7-9: P5 executes 2 (remaining 1)

6. 9-11: P6 executes 2 (remaining 0, completes at 11)

7. 11-13: P1 executes 2 (remaining 4)
8. 13-15: P2 executes 2 (remaining 0, completes at 15)
9. 15-16: P5 executes 1 (remaining 0, completes at 16)
10. 16-17: P1 executes 1 (remaining 0, completes at 17)

Step 2: Completion Time (CT)

Page 7 of 16

Process CT

P1
P2
P3
P4
P5
P6

17
15
6
7
16
11

Step 3: Turn Around Time (TAT)

TAT=CT - AT

Process CT AT TAT=CT - AT

P1
P2
P3
P4
P5
P6

17
15
6
7
16
11

0

1
2
3
4
5

17
14
4
4
12
6

Step 4: Waiting Time (WT)

WT =TAT - BT

Process
P1
P2
P3
P4
P5
P6

TAT BT WT =TAT - BT

17 8
14 4
4 2
4 1
12 3
6 2

9
10

H O W N

Step 5: Response Time (RT)
RT = Time of first execution - Arrival Time

Process First Execution AT RT = First — AT

P1
P2
P3
P4
P5
P6

0

O 9 N B~

0

DN A W N ==

0

1
2
3
3
4

Step 6: Average TAT and WT

Average TAT = {17+14+4+4+12+6} {6} =57/6 =9.5

Page 8 of 16

Average WT = \frac{9+10+2+3+9+4} {6} =37/6 = 6.17

Summary Table
Process AT BT CT TAT WT RT
Pl 0 8 1717 9 0

P2 1 4 1514 10 1
P3 2 2 6 4 2 2
P4 31 7 4 3 3
P5 4 3 16 12 9 3
P6 5 2 116 4 4

e Average TAT =9.5
e Average WT =6.17

1. Pipeline Hazards
In instruction pipelines, hazards are conditions that prevent the next instruction in the
pipeline from executing in its designated clock cycle. They reduce pipeline efficiency.
Hazards are of three main types:
a) Structural Hazards
¢ Occur when hardware resources are insufficient to execute all instructions
concurrently.
e Example: Only one memory unit available, but two instructions require memory
access simultaneously.
e Solution: Add more resources (e.g., separate instruction/data memory, multiple

ALUEs).
b) Data Hazards
¢ Occur when an instruction depends on the result of a previous instruction that has not
yet completed.
e Types:

1. RAW (Read After Write) — true dependency, instruction reads a value
before it’s written.
2. WAR (Write After Read) — instruction writes after another reads;
uncommon in simple pipelines.
3. WAW (Write After Write) — instruction writes to a location before previous
instruction writes; occurs in pipelines with out-of-order execution.
e Solution: Forwarding (bypassing) or inserting stalls.
¢) Control Hazards (Branch Hazards)
e Occur due to branch or jump instructions where the pipeline cannot determine the
next instruction immediately.
e Example: If a branch is taken or not taken, instructions already in the pipeline may be
invalid.
¢ Solution: Branch prediction, delayed branching, or flushing the pipeline.

2. Pipeline Performance Metrics
a) Speedup

[
\text{Speedup} = \frac {\text{Time without pipeline}} {\text{Time with pipeline} }

]
o Ideal speedup = Number of pipeline stages (n), assuming no hazards.
b) Throughput

Page 9 of 16

e Number of instructions completed per unit time.
[
\text{Throughput} = \frac{1} {\text{Clock cycle time} }
]
¢) Latency (Execution Time)
e Time taken for a single instruction to pass through the entire pipeline.
o Increases slightly with hazards or stalls.
d) Pipeline Efficiency
[
\text{Efficiency} = \frac {\text{Time for executing instructions} } {\text{Time if pipeline fully
utilized} } \times 100%
]
e Reduces with stalls due to hazards.
e) Pipeline Utilization
e Fraction of time the pipeline is doing useful work versus being idle due to hazards or
resource conflicts.

Summary:

Aspect Description

Structural Hardware resource conflict

Hazard

Data Hazard Instruction depends on previous instruction’s result (RAW, WAR,

WAW)
Control Hazard Branch/jump instruction uncertainty

Speedup Time ratio without pipeline / with pipeline
Throughput Instructions per unit time

Latency Time for single instruction to pass through pipeline
Efficiency Fraction of ideal pipeline speed achieved
Utilization Fraction of pipeline busy doing useful work

1. Programmed 1/O (Polling)
e In programmed I/O, the CPU is responsible for controlling all data transfers between
memory and I/O devices.
o The CPU repeatedly polls (checks) the status of the I/O device to see if it is ready to
send or receive data.
e Characteristics:
o Simple to implement.
o CPU is fully involved, so it wastes time waiting for the I/O device.
o Example: Reading a keyboard input in a loop.

2. Interrupt-Driven 1/0
o The CPU issues a request to the /O device and continues executing other
instructions.
o When the device is ready, it generates an interrupt signal to the CPU.
e The CPU then suspends its current execution, executes the interrupt service routine
(ISR) to handle data transfer, and resumes the original task.
e Advantages:
o CPU is not idle while waiting for I/O.
o More efficient than programmed 1/O.
o Example: Disk I/O, network card receiving packets.

Page 10 of 16

3. Direct Memory Access (DMA)
e A DMA controller handles data transfer directly between memory and I/O devices
without CPU intervention.

e Steps:
1. CPU initializes DMA with source, destination, and amount of data.
2. DMA controller transfers data while CPU performs other tasks.
3. DMA generates an interrupt to notify CPU after completion.

e Advantages:
o High-speed data transfer.
o Reduces CPU overhead.

¢ Example: Disk-to-memory or memory-to-memory data transfer.

4. Memory-Mapped 1/O vs. Isolated 1/O0
While not strictly transfer methods, these define how CPU accesses 1/O devices:
¢ Memory-Mapped 1/O: I/O devices share the same address space as memory; CPU
can use normal instructions to read/write 1/0O.
o Isolated I/O (Port-Mapped 1/0): Separate address space for I/O; special CPU
instructions (IN/OUT) are used for I/O access.

Summary Table
Method How it Works Pros Cons

Simple, easy to CPU idle while

Programmed I/O CPU polls device for status . o
implement waiting

Interrupt-Driven - Device interrupts CPU when Efficient, CPU not idle Interrupt overhead

/0 ready
DMA controller transfers High-speed, minimal
DMA data directly CPU use Complex hardware
Q.3 | Attempt any FOUR. (All questions carry equal marks)
A. | Perform 12 + 3 using the Restoring Division Algorithm step by step.

Restoring Division Algorithm Steps
We want to divide 12 + 3.
Step 1: Represent numbers in binary
e Dividend (Q) =12 — 1100 (4 bits)
e Divisor (M) =3 — 0011 (4 bits)
e We also use Accumulator (A) initialized to 0 — 0000

Step 2: Algorithm setup
e Number of bits in dividend = 4 — perform 4 iterations.
e Restoring division steps:
1. Shift (A, Q) left by 1 bit
2. A=A-M
3. fA>0—-Q0=1
Else > Q0 =0, restore A=A +M

Step 3: Iterations
Iteration 1
o Initial: A=0000, Q=1100

Page 11 of 16

Shift left (A,Q) — A=0001, Q=1000

Restore: A=A +M=-0010+0011= 0001
SetQ0=0

e Result after iteration 1: A=0001, Q=1000
Iteration 2

e Shift left: A=0010, Q=0000

e Subtract M: 0010 — 0011 =-0001 — negative
e Restore: A=A +M=-0001+0011=0010

e SetQ0=0
e Result: A=0010, Q=0000
Iteration 3
e Shift left: A=0100, Q=0000
e Subtract M: 0100 — 0011 = 0001 — positive
e SetQ0=1
e Result: A=0001, Q=0001
Iteration 4
e Shift left: A=0010, Q=0010

e Subtract M: 0010 — 0011 =-0001 — negative
e Restore: A=A +M=-0001+0011=0010
e SetQ0=0
e Result: A=0010, Q=0010

Step 4: Final Result

¢ Quotient (Q)=0100 — 4
e Remainder (A) = 0000 — 0
12 + 3 = Quotient 4, Remainder 0

Subtract M: A = 0001 — 0011 =-0010 — negative

Feature Hardwired Control Unit
Uses fixed combinational
Definition logic to generate control

signals.

Implemented with gates, flip-
Implementation flops, decoders, and
multiplexers.

Inflexible; difficult to modify

Flexibility once designed.

Less hardware complexity for
simple instructions, but
increases for complex
instructions.

Complexity

Faster, as control signals are
generated directly through
combinational logic.

Speed

Design Effort for complex instruction sets.

Complex and time-consuming Easier to design, especially for

Microprogrammed Control Unit

Uses a set of microinstructions
stored in memory (control memory)
to generate control signals.

Implemented using control
memory and a microprogram
sequencer.

Flexible; easy to modify or update
control signals by changing
microprograms.

More hardware (control memory)
required, but design is simpler for
complex instruction sets.

Slower, as control signals are
fetched sequentially from control
memory.

complex instruction sets.

Page 12 of 16

Best for simple, fixed Best for complex instruction sets
instruction sets (RISC). (CISCO).

Requires redesign of hardware Simply update the microprogram in
Modification to change instruction setor ~ memory to modify instruction set or

Suitability

control logic. control signals.
Examples Early computers like IBM CISC processors, VAX, and modern
P 360, RISC processors. microcoded CPUs.
Memory Hierarchy

Memory hierarchy organizes storage devices in layers based on speed, cost, and capacity.
The closer a memory is to the CPU, the faster and more expensive it is per byte. This structure
improves performance while keeping costs manageable.
Levels of Memory Hierarchy
1. Registers
o Located inside the CPU.
o Fastest form of memory.
o Holds data currently being processed by the CPU.
o Very small in size.
2. Cache Memory
o High-speed memory between CPU and main memory.
o Stores frequently accessed instructions and data to reduce CPU wait time.
o Types: L1 (smallest, fastest), L2, L3 (larger but slower).
3. Main Memory (RAM)
o Stores programs and data currently in use.
o Slower than cache but larger in size.
o Volatile memory (contents lost on power off).
4. Secondary Storage
o Examples: Hard disk drives (HDD), Solid-state drives (SSD).
o Non-volatile; stores programs and data permanently.
o Much slower than RAM but larger and cheaper.
5. Tertiary Storage / Offline Storage
o Examples: Optical disks, magnetic tapes.
o Used for backups and archival storage.
o Very high capacity but slowest access time.

Principle
e Speed decreases as we move down the hierarchy.
e Capacity increases as we move down the hierarchy.
e Cost per bit decreases as we move down the hierarchy.
This design is based on locality of reference:
o Temporal locality: recently accessed data likely to be accessed again — stored in
cache.
e Spatial locality: nearby data likely to be accessed soon — prefetch into faster
memory.

Diagram (Top to Bottom)

CPU Registers — Fastest, smallest, inside CPU

Cache Memory — Fast, small, between CPU and RAM
Main Memory — Slower, larger, RAM

Secondary Storage — Slower, larger, HDD/SSD

Tertiary Storage — Slowest, largest, tapes/disks

Page 13 of 16

Summary:
The memory hierarchy balances speed, cost, and size to ensure the CPU can access data
efficiently while keeping overall system cost reasonable.

Instruction Pipelining
Instruction pipelining is a technique used in CPUs to improve instruction
throughput by overlapping the execution of multiple instructions. Instead of executing one
instruction at a time from start to finish, the instruction is divided into stages (e.g., Fetch,
Decode, Execute, Memory Access, Write Back), and each stage processes a different
instruction simultaneously.
e Advantages:
o Increases CPU throughput (more instructions per unit time).
o Reduces CPU idle time.
e Limitations:
o Pipeline hazards such as data hazards, control hazards, and structural
hazards can reduce efficiency.
o Example: While one instruction is being executed, the next instruction can be
decoded, and the third instruction can be fetched from memory.
Summary: Instruction pipelining allows concurrent execution of instruction
stages, improving CPU performance without increasing clock speed.

If you want, I can also make a small diagram showing 5-stage instruction
pipelining for easy understanding in exams.
Do you want me to do that?

Here’s a structured explanation of File Organization and Access:

1. File Organization
File organization defines how data is stored in a file on secondary storage (like a hard disk)
and how it is structured for efficient access. The choice of organization affects performance
and access time.
Common Types of File Organization:
1. Sequential Organization
o Records are stored one after another in logical order (e.g., ascending key
values).
o Efficient for batch processing and reading all records.
o Example: Payroll records processed monthly.
o Limitation: Inserting or updating records in the middle can be slow.
2. Direct (or Hashed) Organization
o Uses a hash function on a key to determine the record’s location.
o Enables fast access to a particular record without reading others.
o Example: Employee database accessed by Employee ID.
o Limitation: Collisions may occur, requiring collision resolution techniques.
3. Indexed Organization
o Anindex table is maintained with pointers to actual records.
o Combines fast access of direct files with sequential access capability.
o Example: Library catalog where book titles are indexed.
o Limitation: Additional storage required for index.

2. File Access Methods

Page 14 of 16

File access method determines how records in a file are read or written.
1. Sequential Access
o Records are accessed in order, starting from the beginning.
o Suitable for batch processing.
o Example: Reading a text file line by line.
2. Direct (Random) Access
o Records can be accessed directly using a key or address.
o Fast and efficient for specific record retrieval.
o Example: Banking system retrieving account details by account number.
3. Indexed Access
o Combines sequential and direct access using an index structure.
o Useful for large files where both fast lookup and sequential processing are
needed.

1. CPU Speed

e CPU speed indicates how fast a processor can execute instructions.
e Measured in clock frequency (Hz), e.g., MHz or GHz.
o Execution time of a program depends on:

CPU Time = Instruction Count x CPI x Clock Cycle Time

or equivalently:

CPU Time = Instruction Count x CPI x Clock Frequency

2. CPI (Cycles Per Instruction)

o CPI measures the average number of clock cycles required to execute an
instruction.
e Depends on:
o Instruction set architecture
o Pipeline design
o Memory hierarchy (cache hits/misses)
e Formula:
CPI = Total Clock Cycles/ Number of Instructions

]
e Lower CPI — faster CPU for the same clock rate.

3. MIPS (Million Instructions Per Second)

e Measures instruction execution rate of a CPU.
e Formula:

[

MIPS = Instruction Count / (Execution Time x 10° = Clock Frequency (Hz)/
{CPIx 10°

]

e Higher MIPS — faster instruction execution.

Page 15 of 16

o Limitation: MIPS can be misleading because different programs and
instructions require different cycles.

4. MFLOPS (Million Floating-Point Operations Per
Second)

e Measures floating-point computational performance of a CPU.

e Formula:
MFLOPS = Number of Floating-Point Operations / Execution Time in
seconds x 10°
Useful for scientific and engineering computations.

Summary
Metric Definition Formula Notes
CPU Clock frequency of Determines basic cycle
Speed CPU time
CPI Cycles per instruction CPI = Tptal cycles / Lower.CPI — faster
Instructions execution
MIPS Million MIPS = Clock freq/ Instruction throughput
instructions/sec (CPI x 10°) measure
Million floating-point MFLOPS =FP ops/ Performance for floating-
MFLOPS . . :
ops/sec (Time x 10°) point calculations

*Note:

4,

Read the instruction carefully mentioned in your appointment letter.

Provide detail solution with marking scheme as this solution needs to be displayed on website before

open house.

All paper setters need to rename the question paper file as “Class Branch Sem CourseCode QPset
no.” (e.g.ME IS II MEISC201 QP1) and solution key as “Class_Branch Sem CourseCode SKset

no.”(e.g. ME_IS_II MEISC201_SK1).
Kindly remove this note (mentioned in Red text) from

the final copy before submitting your Solution key.

Page 16 of 16

