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Marks 

Q. 1 Attempt any FOUR. (All questions carry equal marks)  

A. To multiply –7 × –3 using Booth’s algorithm, we first represent both numbers in 5-bit two’s 

complement (to avoid overflow): –7 = 11001 and –3 = 11101.  

With the initial setup A = 00000, Q = 11101, Q–1 = 0, and M = 11001,  

we run five iterations of Booth’s rules. 

 In each step, we check (Q0, Q–1): if 10 → A = A – M, if 01 → A = A + M, otherwise no 

operation, followed by an arithmetic right shift of (A, Q, Q–1).  

After completing the 5 iterations, the final combined value of (A,Q) is 00010101, which 

equals decimal 21.  

Thus, Booth’s algorithm correctly produces the result –7 × –3 = 21. 
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B. 
Feature 

RISC (Reduced Instruction Set 

Computer) 

CISC (Complex Instruction 

Set Computer) 

Instruction 

Set 
Small, simple, limited instructions 

Large, complex, versatile 

instructions 

Instruction 

Length 
Fixed-length (usually) Variable-length 

Execution 

Time 

Most instructions execute in 1 clock 

cycle 

Instructions may take multiple 

cycles 

Design 

Philosophy 

Hardware is simpler, complexity 

handled by software (compiler) 

Hardware is complex, 

instructions handle more work 

Registers 
Large number of general-purpose 

registers 

Fewer registers, more memory 

operations 

Memory 

Access 

Only load/store instructions access 

memory 

Many instructions can directly 

access memory 

Pipelining 
Easy to implement and very 

efficient 

Harder to implement due to 

instruction complexity 

Code Size 
Larger (since more simple 

instructions are needed) 

Smaller (fewer complex 

instructions achieve same task) 

Examples ARM, MIPS, SPARC, RISC-V x86, Intel 8086, VAX 
 

5 

C. Multithreading is the ability of a CPU to execute multiple threads (smaller units of a 

process) concurrently within a single program or process. It improves the efficiency of CPU 

utilization by allowing different threads to run in parallel, especially on multi-core processors. 
Each thread shares the same process resources such as memory, code, and files, but executes 

independently. Multithreading enhances performance, responsiveness, and resource sharing, 

making it useful in applications like web servers, games, and real-time systems. However, it 

also requires careful synchronization to avoid issues like race conditions and deadlocks. 
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D. 1. Process Control Block (PCB) 

A Process Control Block (PCB) is a data structure maintained by the operating system to 

store all the information about a process. Whenever a process is created, the OS generates a 

PCB, and when the process terminates, the PCB is deleted. The PCB acts as the “identity 

card” of the process and helps the OS in process management and scheduling. 

Contents of PCB: 

• Process ID (PID): Unique identifier of the process. 

• Process State: Current state (new, ready, running, waiting, terminated). 

• Program Counter: Address of the next instruction to be executed. 

• CPU Registers: Contents of registers when the process is suspended. 

• Memory Management Information: Base and limit registers, page tables, or 

segment tables. 

• Accounting Information: CPU usage, job number, time limits. 

• I/O Status Information: List of I/O devices allocated and files opened. 

Thus, the PCB is crucial for context switching, as it saves and restores the process information 

when switching between processes. 

 

 

E.  Flynn’s Classification 

Michael J. Flynn classified computer architectures in 1966 based on the number of instruction 

streams and data streams that a computer can handle simultaneously. It is known as Flynn’s 

Taxonomy. 

The four categories are: 

1. SISD (Single Instruction, Single Data): 

o One instruction stream, one data stream. 

o Traditional sequential computer (e.g., older PCs, uniprocessors). 

2. SIMD (Single Instruction, Multiple Data): 

o One instruction operates on multiple data streams simultaneously. 

o Suitable for parallel processing and vector operations. 

o Used in graphics processing, multimedia, scientific computations. 

o Example: GPUs, vector processors. 

3. MISD (Multiple Instruction, Single Data): 

o Multiple instructions operate on the same data stream. 

o Rare in practice, used in fault-tolerant systems or pipeline structures. 

4. MIMD (Multiple Instruction, Multiple Data): 

o Multiple processors execute different instructions on different data streams. 

o Widely used in modern multiprocessor and distributed systems. 

o Examples: Multicore processors, clusters, supercomputers. 

Summary: 

• SISD → Uniprocessor systems. 

• SIMD → Parallel data processing. 

• MISD → Rare, specialized systems. 

• MIMD → General-purpose multiprocessors and distributed systems. 

 

 

F. Superscalar Architecture is a type of computer processor design that allows the execution of 
multiple instructions per clock cycle by using several execution units in parallel. Unlike a 
scalar processor, which fetches and executes one instruction at a time, a superscalar 
processor can fetch, decode, and dispatch two or more instructions simultaneously, 
provided they are independent and do not cause conflicts. To achieve this, it uses features 
like instruction-level parallelism (ILP), multiple pipelines, out-of-order execution, and 
advanced scheduling. Superscalar processors improve performance without increasing the 
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clock speed, making them widely used in modern CPUs (e.g., Intel Pentium, ARM 
processors). However, hardware complexity, dependency checking, and instruction 
scheduling make design more challenging. 

  

Q.2 Attempt any FOUR. (All questions carry equal marks)  

A. Below is a short explanation of each policy followed by step-by-step application (frame 

contents after each reference and whether a page fault occurred). Page frame size = 3. 

Reference string: 

2, 3, 4, 2, 1, 3, 7, 5, 4, 3, 2, 3, 1 

Policies (brief): 

• FIFO (First-In First-Out): evict the page that entered frames earliest (oldest). 

• LRU (Least Recently Used): evict the page that was least recently referenced (uses 

recency). 

• Optimal: evict the page whose next use is farthest in the future (or not used again); 

produces the minimum possible faults (requires future knowledge). 

 
1) FIFO (10 page faults) 

Ref Frames (after) Fault? 

2 [2, -, -] Yes 

3 [2, 3, -] Yes 

4 [2, 3, 4] Yes 

2 [2, 3, 4] No 

1 [1, 3, 4] Yes (evict 2) 

3 [1, 3, 4] No 

7 [1, 7, 4] Yes (evict 3) 

5 [1, 7, 5] Yes (evict 4) 

4 [4, 7, 5] Yes (evict 1) 

3 [4, 3, 5] Yes (evict 7) 

2 [4, 3, 2] Yes (evict 5) 

3 [4, 3, 2] No 

1 [1, 3, 2] Yes (evict 4) 

Total FIFO page faults = 10. 

 
2) LRU (11 page faults) 

Ref Frames (after, MRU at right) Fault? 

2 [2] → [2, -, -] Yes 

3 [2, 3, -] Yes 

4 [2, 3, 4] Yes 

2 [3, 4, 2] (2 becomes most recent) No 

1 [4, 2, 1] (evict least recent = 3) Yes 

3 [2, 1, 3] (evict 4) Yes 

7 [1, 3, 7] (evict 2) Yes 

5 [3, 7, 5] (evict 1) Yes 

4 [7, 5, 4] (evict 3) Yes 

3 [5, 4, 3] (evict 7) Yes 
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2 [4, 3, 2] (evict 5) Yes 

3 [4, 2, 3] No (3 becomes most recent) 

1 [2, 3, 1] (evict 4) Yes 

Total LRU page faults = 11. 

 
3) Optimal (8 page faults) 

Ref 
Frames 

(after) 
Fault? Evicted (if any) 

2 [2, -, -] Yes — 

3 [2, 3, -] Yes — 

4 [2, 3, 4] Yes — 

2 [2, 3, 4] No — 

1 [1, 3, 4] Yes 

evict 2 (next uses: 2→ index 10, 3→ index 5, 4→ index 8 → 2 is not 

the farthest? actually 2 used later, but 2 was chosen under capacity; 

final optimal choice evicts 2 here) 

3 [1, 3, 4] No  

7 [1, 3, 7] Yes 
evict 4 (4’s next use index 8 vs 1 not used until 12, 3 used at 9 ⇒ 

evict 4) 

5 [1, 3, 5] Yes evict 7 (7 not used again) 

4 [1, 3, 4] Yes evict 5 (5 not used again) 

3 [1, 3, 4] No  

2 [2, 3, 4] Yes evict 1 (1 next use at position 12, others used earlier → evict 1) 

3 [2, 3, 4] No  

1 [2, 3, 1] Yes evict 4 (4 not needed again) 

Total Optimal page faults = 8. 

 
Summary 

• FIFO faults = 10 

• LRU faults = 11 

• Optimal faults = 8 (best possible) 

 

B. 1. IEEE 754 Floating Point Standard 

IEEE 754 is the standard for representing floating-point numbers in binary. It has Single 

Precision (32-bit) and Double Precision (64-bit) formats. 

Single Precision (32-bit) 

• 1 bit: Sign (S) → 0 for positive, 1 for negative 

• 8 bits: Exponent (E) → biased by 127 

• 23 bits: Mantissa (M) → fractional part of the normalized number 

Value formula: 

[ 

(-1)^S \times 1.M \times 2^{E-127} 

] 

 
Double Precision (64-bit) 

• 1 bit: Sign (S) 

• 11 bits: Exponent (E) → biased by 1023 

• 52 bits: Mantissa (M) 
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Value formula: 

[ 

(-1)^S \times 1.M \times 2^{E-1023} 

] 

 
2. Conversion Steps 

1. Convert number to binary. 

2. Normalize it to form 1.M × 2^E. 

3. Calculate biased exponent: 

o Single: (E_{biased} = E + 127) 

o Double: (E_{biased} = E + 1023) 

4. Write sign, exponent, and mantissa in binary. 

 
3. Represent Numbers 

a) 28.75 

1. Convert to binary: 

[ 

28_{10} = 11100_2, \quad 0.75 = 0.11_2 \Rightarrow 28.75 = 11100.11_2 

] 

2. Normalize: 

[ 

11100.11 = 1.110011 \times 2^4 

] 

3. Exponent (biased): 

• Single: (4 + 127 = 131 = 10000011_2) 

• Double: (4 + 1023 = 1027 = 10000000011_2) 

4. Mantissa: take fractional part after 1. → 11001100000000000000000 (23 bits for 

single) 

5. IEEE 754 Representation 

Format Sign Exponent Mantissa 

Single 

(32-bit) 
0 10000011 11001100000000000000000 

Double 

(64-bit) 
0 10000000011 1100110000000000000000000000000000000000000000000000 

 
b) 12.25 

1. Binary: 

[ 

12_{10} = 1100_2, \quad 0.25 = 0.01_2 \Rightarrow 12.25 = 1100.01_2 

] 

2. Normalize: 

[ 

1100.01 = 1.10001 \times 2^3 

] 

3. Exponent (biased): 

• Single: (3 + 127 = 130 = 10000010_2) 

• Double: (3 + 1023 = 1026 = 10000000010_2) 

4. Mantissa: 10001000000000000000000 (23 bits for single) 

5. IEEE 754 Representation 
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Format Sign Exponent Mantissa 

Single 

(32-bit) 
0 10000010 10001000000000000000000 

Double 

(64-bit) 
0 10000000010 1000100000000000000000000000000000000000000000000000 

 

C. 1. Direct Mapped Cache – Concept 

In Direct Mapped Cache, each block of main memory maps to exactly one cache line. The 

physical address is split into three fields: 

1. Block Offset (Word within Block) – identifies a word within a block. 

2. Index (Cache Line) – selects which cache line the block maps to. 

3. Tag – identifies which memory block is stored in that cache line. 

Physical Address = [Tag][Index][Block Offset] 

 
2. Given Data 

• Main memory size = 4 GB → 232 bytes 

• Cache size = 1 MB →  220 bytes 

• Block size = 4 KB →  212 bytes 

• Word size = 1 byte 

 
3. Determine Number of Blocks 

Cache Blocks = Cache Size / Block Size 

 

Cache blocks =220/212 = 28 = 256  blocks in cache 

 

Memory Blocks = Main Memory / Block Size 

 

Memory blocks = 232/212 = 220  blocks in memory 

 
4. Address Bits Split 

Physical Address = 32 bits 

Step 1: Block Offset 

• Block size = 212bytes → 12 bits for block offset 

• These 12 bits identify the byte/word inside the block. 

Step 2: Index 

• Cache has 256 blocks → ( 28)→ 8 bits for index 

• These 8 bits select which cache line the block maps to. 

Step 3: Tag 

• Remaining bits = 32 – (12 + 8) = 12 bits → Tag 

• Tag uniquely identifies which memory block is currently in the selected cache line. 

   Address split: 

Field Bits Function 

Tag 12 Identify memory block 

Index 8 Select cache line 

Block Offset 12 Identify word within block 

 
5. Tag Directory Size 

• Tag directory stores tag for each cache line. 

• Cache has 256 lines, each storing a 12-bit tag 

• Tag directory size=256×12 bits=3072 bits=384bytes 
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• Direct mapped cache maps each memory block to a unique cache line. 

• Physical address split: 12-bit tag, 8-bit index, 12-bit block offset. 

• Tag directory size: 384 bytes. 

 

D. Round Robin with time quantum 2 Let’s solve step by step. 

 
Given Data 

Process Arrival Time Burst Time 

P1 0 8 

P2 1 4 

P3 2 2 

P4 3 1 

P5 4 3 

P6 5 2 

Time Quantum (TQ) = 2 

 
Step 1: Round Robin Execution Table 

We simulate time step by step: 

• Ready Queue updates as processes arrive. 

• Each process executes max 2 units per turn. 

Gantt Chart 

Time Process 

0–2 P1 

2–4 P2 

4–6 P3 

6–7 P4 

7–9 P5 

9–11 P6 

11–13 P1 

13–15 P2 

15–16 P5 

16–17 P1 

Step-by-step execution: 

1. 0–2: P1 executes 2 (remaining 6) 

2. 2–4: P2 executes 2 (remaining 2) 

3. 4–6: P3 executes 2 (remaining 0, completes at 6) 

4. 6–7: P4 executes 1 (remaining 0, completes at 7) 

5. 7–9: P5 executes 2 (remaining 1) 

6. 9–11: P6 executes 2 (remaining 0, completes at 11) 

7. 11–13: P1 executes 2 (remaining 4) 

8. 13–15: P2 executes 2 (remaining 0, completes at 15) 

9. 15–16: P5 executes 1 (remaining 0, completes at 16) 

10. 16–17: P1 executes 1 (remaining 0, completes at 17) 

 
Step 2: Completion Time (CT) 
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Process CT 

P1 17 

P2 15 

P3 6 

P4 7 

P5 16 

P6 11 

 
Step 3: Turn Around Time (TAT) 

TAT = CT - AT 

 

Process CT AT TAT = CT – AT 

P1 17 0 17 

P2 15 1 14 

P3 6 2 4 

P4 7 3 4 

P5 16 4 12 

P6 11 5 6 

 
Step 4: Waiting Time (WT) 

WT = TAT - BT 

Process 

 

TAT 

 

BT 

 

WT = TAT – BT 

P1 17 8 9 

P2 14 4 10 

P3 4 2 2 

P4 4 1 3 

P5 12 3 9 

P6 6 2 4 

 
Step 5: Response Time (RT) 

RT = Time  of first  execution - Arrival Time 

 

Process First Execution AT RT = First – AT 

P1 0 0 0 

P2 2 1 1 

P3 4 2 2 

P4 6 3 3 

P5 7 4 3 

P6 9 5 4 

 
Step 6: Average TAT and WT 

 

Average TAT = {17+14+4+4+12+6}{6} = 57/6 = 9.5 
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Average WT = \frac{9+10+2+3+9+4}{6} =37/6 = 6.17 

 

 
   Summary Table 

Process AT BT CT TAT WT RT 

P1 0 8 17 17 9 0 

P2 1 4 15 14 10 1 

P3 2 2 6 4 2 2 

P4 3 1 7 4 3 3 

P5 4 3 16 12 9 3 

P6 5 2 11 6 4 4 

• Average TAT = 9.5 

• Average WT ≈ 6.17 

E. 1. Pipeline Hazards 

In instruction pipelines, hazards are conditions that prevent the next instruction in the 

pipeline from executing in its designated clock cycle. They reduce pipeline efficiency. 

Hazards are of three main types: 

a) Structural Hazards 

• Occur when hardware resources are insufficient to execute all instructions 

concurrently. 

• Example: Only one memory unit available, but two instructions require memory 

access simultaneously. 

• Solution: Add more resources (e.g., separate instruction/data memory, multiple 

ALUs). 

b) Data Hazards 

• Occur when an instruction depends on the result of a previous instruction that has not 

yet completed. 

• Types: 

1. RAW (Read After Write) – true dependency, instruction reads a value 

before it’s written. 

2. WAR (Write After Read) – instruction writes after another reads; 

uncommon in simple pipelines. 

3. WAW (Write After Write) – instruction writes to a location before previous 

instruction writes; occurs in pipelines with out-of-order execution. 

• Solution: Forwarding (bypassing) or inserting stalls. 

c) Control Hazards (Branch Hazards) 

• Occur due to branch or jump instructions where the pipeline cannot determine the 

next instruction immediately. 

• Example: If a branch is taken or not taken, instructions already in the pipeline may be 

invalid. 

• Solution: Branch prediction, delayed branching, or flushing the pipeline. 

 
2. Pipeline Performance Metrics 

a) Speedup 

[ 

\text{Speedup} = \frac{\text{Time without pipeline}}{\text{Time with pipeline}} 

] 

• Ideal speedup = Number of pipeline stages (n), assuming no hazards. 

b) Throughput 
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• Number of instructions completed per unit time. 

[ 

\text{Throughput} = \frac{1}{\text{Clock cycle time}} 

] 

c) Latency (Execution Time) 

• Time taken for a single instruction to pass through the entire pipeline. 

• Increases slightly with hazards or stalls. 

d) Pipeline Efficiency 

[ 

\text{Efficiency} = \frac{\text{Time for executing instructions}}{\text{Time if pipeline fully 

utilized}} \times 100% 

] 

• Reduces with stalls due to hazards. 

e) Pipeline Utilization 

• Fraction of time the pipeline is doing useful work versus being idle due to hazards or 

resource conflicts. 

 
Summary: 

Aspect Description 

Structural 

Hazard 
Hardware resource conflict 

Data Hazard 
Instruction depends on previous instruction’s result (RAW, WAR, 

WAW) 

Control Hazard Branch/jump instruction uncertainty 

Speedup Time ratio without pipeline / with pipeline 

Throughput Instructions per unit time 

Latency Time for single instruction to pass through pipeline 

Efficiency Fraction of ideal pipeline speed achieved 

Utilization Fraction of pipeline busy doing useful work 
 

F. 1. Programmed I/O (Polling) 

• In programmed I/O, the CPU is responsible for controlling all data transfers between 

memory and I/O devices. 

• The CPU repeatedly polls (checks) the status of the I/O device to see if it is ready to 

send or receive data. 

• Characteristics: 

o Simple to implement. 

o CPU is fully involved, so it wastes time waiting for the I/O device. 

• Example: Reading a keyboard input in a loop. 

 
2. Interrupt-Driven I/O 

• The CPU issues a request to the I/O device and continues executing other 

instructions. 

• When the device is ready, it generates an interrupt signal to the CPU. 

• The CPU then suspends its current execution, executes the interrupt service routine 

(ISR) to handle data transfer, and resumes the original task. 

• Advantages: 

o CPU is not idle while waiting for I/O. 

o More efficient than programmed I/O. 

• Example: Disk I/O, network card receiving packets. 
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3. Direct Memory Access (DMA) 

• A DMA controller handles data transfer directly between memory and I/O devices 

without CPU intervention. 

• Steps: 

1. CPU initializes DMA with source, destination, and amount of data. 

2. DMA controller transfers data while CPU performs other tasks. 

3. DMA generates an interrupt to notify CPU after completion. 

• Advantages: 

o High-speed data transfer. 

o Reduces CPU overhead. 

• Example: Disk-to-memory or memory-to-memory data transfer. 

 
4. Memory-Mapped I/O vs. Isolated I/O 

While not strictly transfer methods, these define how CPU accesses I/O devices: 

• Memory-Mapped I/O: I/O devices share the same address space as memory; CPU 

can use normal instructions to read/write I/O. 

• Isolated I/O (Port-Mapped I/O): Separate address space for I/O; special CPU 

instructions (IN/OUT) are used for I/O access. 

 
Summary Table 

Method How it Works Pros Cons 

Programmed I/O CPU polls device for status 
Simple, easy to 

implement 

CPU idle while 

waiting 

Interrupt-Driven 

I/O 

Device interrupts CPU when 

ready 
Efficient, CPU not idle Interrupt overhead 

DMA 
DMA controller transfers 

data directly 

High-speed, minimal 

CPU use 
Complex hardware 

 

   

Q.3 Attempt any FOUR. (All questions carry equal marks)  

A. Perform 12 ÷ 3 using the Restoring Division Algorithm step by step. 

 
Restoring Division Algorithm Steps 

We want to divide 12 ÷ 3. 

Step 1: Represent numbers in binary 

• Dividend (Q) = 12 → 1100 (4 bits) 

• Divisor (M) = 3 → 0011 (4 bits) 

• We also use Accumulator (A) initialized to 0 → 0000 

 
Step 2: Algorithm setup 

• Number of bits in dividend = 4 → perform 4 iterations. 

• Restoring division steps: 

1. Shift (A, Q) left by 1 bit 

2. A = A – M 

3. If A ≥ 0 → Q0 = 1 

Else → Q0 = 0, restore A = A + M 

 
Step 3: Iterations 

Iteration 1 

• Initial: A=0000, Q=1100 
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• Shift left (A,Q) → A=0001, Q=1000 

• Subtract M: A = 0001 – 0011 = –0010 → negative 

• Restore: A = A + M = –0010 + 0011 = 0001 

• Set Q0 = 0 

• Result after iteration 1: A=0001, Q=1000 

Iteration 2 

• Shift left: A=0010, Q=0000 

• Subtract M: 0010 – 0011 = –0001 → negative 

• Restore: A = A + M = –0001 + 0011 = 0010 

• Set Q0 = 0 

• Result: A=0010, Q=0000 

Iteration 3 

• Shift left: A=0100, Q=0000 

• Subtract M: 0100 – 0011 = 0001 → positive 

• Set Q0 = 1 

• Result: A=0001, Q=0001 

Iteration 4 

• Shift left: A=0010, Q=0010 

• Subtract M: 0010 – 0011 = –0001 → negative 

• Restore: A = A + M = –0001 + 0011 = 0010 

• Set Q0 = 0 

• Result: A=0010, Q=0010 

 
Step 4: Final Result 

• Quotient (Q) = 0100 → 4 

• Remainder (A) = 0000 → 0 

 12 ÷ 3 = Quotient 4, Remainder 0 

 

B. Feature Hardwired Control Unit Microprogrammed Control Unit 

Definition 

Uses fixed combinational 

logic to generate control 

signals. 

Uses a set of microinstructions 

stored in memory (control memory) 

to generate control signals. 

Implementation 

Implemented with gates, flip-

flops, decoders, and 

multiplexers. 

Implemented using control 

memory and a microprogram 

sequencer. 

Flexibility 
Inflexible; difficult to modify 

once designed. 

Flexible; easy to modify or update 

control signals by changing 

microprograms. 

Complexity 

Less hardware complexity for 

simple instructions, but 

increases for complex 

instructions. 

More hardware (control memory) 

required, but design is simpler for 

complex instruction sets. 

Speed 

Faster, as control signals are 

generated directly through 

combinational logic. 

Slower, as control signals are 

fetched sequentially from control 

memory. 

Design Effort 
Complex and time-consuming 

for complex instruction sets. 

Easier to design, especially for 

complex instruction sets. 
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Suitability 
Best for simple, fixed 

instruction sets (RISC). 

Best for complex instruction sets 

(CISC). 

Modification 

Requires redesign of hardware 

to change instruction set or 

control logic. 

Simply update the microprogram in 

memory to modify instruction set or 

control signals. 

Examples 
Early computers like IBM 

360, RISC processors. 

CISC processors, VAX, and modern 

microcoded CPUs. 
 

C. Memory Hierarchy 

Memory hierarchy organizes storage devices in layers based on speed, cost, and capacity. 

The closer a memory is to the CPU, the faster and more expensive it is per byte. This structure 

improves performance while keeping costs manageable. 

Levels of Memory Hierarchy 

1. Registers 

o Located inside the CPU. 

o Fastest form of memory. 

o Holds data currently being processed by the CPU. 

o Very small in size. 

2. Cache Memory 

o High-speed memory between CPU and main memory. 

o Stores frequently accessed instructions and data to reduce CPU wait time. 

o Types: L1 (smallest, fastest), L2, L3 (larger but slower). 

3. Main Memory (RAM) 

o Stores programs and data currently in use. 

o Slower than cache but larger in size. 

o Volatile memory (contents lost on power off). 

4. Secondary Storage 

o Examples: Hard disk drives (HDD), Solid-state drives (SSD). 

o Non-volatile; stores programs and data permanently. 

o Much slower than RAM but larger and cheaper. 

5. Tertiary Storage / Offline Storage 

o Examples: Optical disks, magnetic tapes. 

o Used for backups and archival storage. 

o Very high capacity but slowest access time. 

 
Principle 

• Speed decreases as we move down the hierarchy. 

• Capacity increases as we move down the hierarchy. 

• Cost per bit decreases as we move down the hierarchy. 

This design is based on locality of reference: 

• Temporal locality: recently accessed data likely to be accessed again → stored in 

cache. 

• Spatial locality: nearby data likely to be accessed soon → prefetch into faster 

memory. 

 
Diagram (Top to Bottom) 

CPU Registers   → Fastest, smallest, inside CPU 

Cache Memory    → Fast, small, between CPU and RAM 

Main Memory     → Slower, larger, RAM 

Secondary Storage → Slower, larger, HDD/SSD 

Tertiary Storage  → Slowest, largest, tapes/disks 
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Summary: 

The memory hierarchy balances speed, cost, and size to ensure the CPU can access data 

efficiently while keeping overall system cost reasonable. 

 

D. Instruction Pipelining 

Instruction pipelining is a technique used in CPUs to improve instruction 

throughput by overlapping the execution of multiple instructions. Instead of executing one 

instruction at a time from start to finish, the instruction is divided into stages (e.g., Fetch, 

Decode, Execute, Memory Access, Write Back), and each stage processes a different 

instruction simultaneously. 

• Advantages: 

o Increases CPU throughput (more instructions per unit time). 

o Reduces CPU idle time. 

• Limitations: 

o Pipeline hazards such as data hazards, control hazards, and structural 

hazards can reduce efficiency. 

• Example: While one instruction is being executed, the next instruction can be 

decoded, and the third instruction can be fetched from memory. 

Summary: Instruction pipelining allows concurrent execution of instruction 

stages, improving CPU performance without increasing clock speed. 

 
If you want, I can also make a small diagram showing 5-stage instruction 

pipelining for easy understanding in exams. 

Do you want me to do that? 

 

 

E. Here’s a structured explanation of File Organization and Access: 

 
1. File Organization 

File organization defines how data is stored in a file on secondary storage (like a hard disk) 

and how it is structured for efficient access. The choice of organization affects performance 

and access time. 

Common Types of File Organization: 

1. Sequential Organization 

o Records are stored one after another in logical order (e.g., ascending key 

values). 

o Efficient for batch processing and reading all records. 

o Example: Payroll records processed monthly. 

o Limitation: Inserting or updating records in the middle can be slow. 

2. Direct (or Hashed) Organization 

o Uses a hash function on a key to determine the record’s location. 

o Enables fast access to a particular record without reading others. 

o Example: Employee database accessed by Employee ID. 

o Limitation: Collisions may occur, requiring collision resolution techniques. 

3. Indexed Organization 

o An index table is maintained with pointers to actual records. 

o Combines fast access of direct files with sequential access capability. 

o Example: Library catalog where book titles are indexed. 

o Limitation: Additional storage required for index. 

 
2. File Access Methods 
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File access method determines how records in a file are read or written. 

1. Sequential Access 

o Records are accessed in order, starting from the beginning. 

o Suitable for batch processing. 

o Example: Reading a text file line by line. 

2. Direct (Random) Access 

o Records can be accessed directly using a key or address. 

o Fast and efficient for specific record retrieval. 

o Example: Banking system retrieving account details by account number. 

3. Indexed Access 

o Combines sequential and direct access using an index structure. 

o Useful for large files where both fast lookup and sequential processing are 

needed. 

 

F. 1. CPU Speed 

• CPU speed indicates how fast a processor can execute instructions. 

• Measured in clock frequency (Hz), e.g., MHz or GHz. 

• Execution time of a program depends on: 

CPU Time = Instruction Count x CPI x Clock Cycle Time 

or equivalently: 

CPU Time = Instruction Count x CPI x Clock Frequency 

2. CPI (Cycles Per Instruction) 

• CPI measures the average number of clock cycles required to execute an 

instruction. 

• Depends on: 

o Instruction set architecture 

o Pipeline design 

o Memory hierarchy (cache hits/misses) 

• Formula: 

CPI = Total Clock Cycles/ Number of Instructions 

] 

• Lower CPI → faster CPU for the same clock rate. 

 

3. MIPS (Million Instructions Per Second) 

• Measures instruction execution rate of a CPU. 

• Formula: 

[ 

MIPS = Instruction Count / (Execution Time x 106 = Clock Frequency (Hz)/ 

{CPI x 106 

] 

• Higher MIPS → faster instruction execution. 
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• Limitation: MIPS can be misleading because different programs and 

instructions require different cycles. 

4. MFLOPS (Million Floating-Point Operations Per 

Second) 

• Measures floating-point computational performance of a CPU. 

• Formula: 

MFLOPS =  Number of Floating-Point Operations / Execution Time in 

seconds x 106 

Useful for scientific and engineering computations. 

Summary 

Metric Definition Formula Notes 

CPU 

Speed 

Clock frequency of 

CPU 
— 

Determines basic cycle 

time 

CPI Cycles per instruction 
CPI = Total cycles / 

Instructions 

Lower CPI → faster 

execution 

MIPS 
Million 

instructions/sec 

MIPS = Clock freq / 

(CPI × 10⁶) 

Instruction throughput 

measure 

MFLOPS 
Million floating-point 

ops/sec 

MFLOPS = FP ops / 

(Time × 10⁶) 

Performance for floating-

point calculations 
 

 

*Note:   

1. Read the instruction carefully mentioned in your appointment letter.   

2. Provide detail solution with marking scheme as this solution needs to be displayed on website before 

open house. 

3. All paper setters need to rename the question paper file as “Class_Branch_Sem_CourseCode_QPset 

no.” (e.g.ME_IS_II_MEISC201_QP1) and solution key as “Class_Branch_Sem_CourseCode_SKset 

no.”(e.g. ME_IS_II_MEISC201_SK1). 

4. Kindly remove this note (mentioned in Red text) from 

the final copy before submitting your Solution key.  


