
Page 1 of 16

(Affiliated to University of Mumbai)

End Semester Examination (R-24) SH

2025

Answer Key with marking scheme
Branch: Electronics and Computer Science

Engineering
Course: Computer Organization

and Architecture
Year/ Semester: SE / III Course code: ECC305
Time: 03 hours Marks: 80

Marks

Q. 1 Attempt any FOUR. (All questions carry equal marks)

A. To multiply –7 × –3 using Booth’s algorithm, we first represent both numbers in 5-bit two’s

complement (to avoid overflow): –7 = 11001 and –3 = 11101.

With the initial setup A = 00000, Q = 11101, Q–1 = 0, and M = 11001,

we run five iterations of Booth’s rules.

 In each step, we check (Q0, Q–1): if 10 → A = A – M, if 01 → A = A + M, otherwise no

operation, followed by an arithmetic right shift of (A, Q, Q–1).

After completing the 5 iterations, the final combined value of (A,Q) is 00010101, which

equals decimal 21.

Thus, Booth’s algorithm correctly produces the result –7 × –3 = 21.

5

B.
Feature

RISC (Reduced Instruction Set

Computer)

CISC (Complex Instruction

Set Computer)

Instruction

Set
Small, simple, limited instructions

Large, complex, versatile

instructions

Instruction

Length
Fixed-length (usually) Variable-length

Execution

Time

Most instructions execute in 1 clock

cycle

Instructions may take multiple

cycles

Design

Philosophy

Hardware is simpler, complexity

handled by software (compiler)

Hardware is complex,

instructions handle more work

Registers
Large number of general-purpose

registers

Fewer registers, more memory

operations

Memory

Access

Only load/store instructions access

memory

Many instructions can directly

access memory

Pipelining
Easy to implement and very

efficient

Harder to implement due to

instruction complexity

Code Size
Larger (since more simple

instructions are needed)

Smaller (fewer complex

instructions achieve same task)

Examples ARM, MIPS, SPARC, RISC-V x86, Intel 8086, VAX

5

C. Multithreading is the ability of a CPU to execute multiple threads (smaller units of a

process) concurrently within a single program or process. It improves the efficiency of CPU

utilization by allowing different threads to run in parallel, especially on multi-core processors.
Each thread shares the same process resources such as memory, code, and files, but executes

independently. Multithreading enhances performance, responsiveness, and resource sharing,

making it useful in applications like web servers, games, and real-time systems. However, it

also requires careful synchronization to avoid issues like race conditions and deadlocks.

Page 2 of 16

D. 1. Process Control Block (PCB)

A Process Control Block (PCB) is a data structure maintained by the operating system to

store all the information about a process. Whenever a process is created, the OS generates a

PCB, and when the process terminates, the PCB is deleted. The PCB acts as the “identity

card” of the process and helps the OS in process management and scheduling.

Contents of PCB:

• Process ID (PID): Unique identifier of the process.

• Process State: Current state (new, ready, running, waiting, terminated).

• Program Counter: Address of the next instruction to be executed.

• CPU Registers: Contents of registers when the process is suspended.

• Memory Management Information: Base and limit registers, page tables, or

segment tables.

• Accounting Information: CPU usage, job number, time limits.

• I/O Status Information: List of I/O devices allocated and files opened.

Thus, the PCB is crucial for context switching, as it saves and restores the process information

when switching between processes.

E. Flynn’s Classification

Michael J. Flynn classified computer architectures in 1966 based on the number of instruction

streams and data streams that a computer can handle simultaneously. It is known as Flynn’s

Taxonomy.

The four categories are:

1. SISD (Single Instruction, Single Data):

o One instruction stream, one data stream.

o Traditional sequential computer (e.g., older PCs, uniprocessors).

2. SIMD (Single Instruction, Multiple Data):

o One instruction operates on multiple data streams simultaneously.

o Suitable for parallel processing and vector operations.

o Used in graphics processing, multimedia, scientific computations.

o Example: GPUs, vector processors.

3. MISD (Multiple Instruction, Single Data):

o Multiple instructions operate on the same data stream.

o Rare in practice, used in fault-tolerant systems or pipeline structures.

4. MIMD (Multiple Instruction, Multiple Data):

o Multiple processors execute different instructions on different data streams.

o Widely used in modern multiprocessor and distributed systems.

o Examples: Multicore processors, clusters, supercomputers.

Summary:

• SISD → Uniprocessor systems.

• SIMD → Parallel data processing.

• MISD → Rare, specialized systems.

• MIMD → General-purpose multiprocessors and distributed systems.

F. Superscalar Architecture is a type of computer processor design that allows the execution of
multiple instructions per clock cycle by using several execution units in parallel. Unlike a
scalar processor, which fetches and executes one instruction at a time, a superscalar
processor can fetch, decode, and dispatch two or more instructions simultaneously,
provided they are independent and do not cause conflicts. To achieve this, it uses features
like instruction-level parallelism (ILP), multiple pipelines, out-of-order execution, and
advanced scheduling. Superscalar processors improve performance without increasing the

Page 3 of 16

clock speed, making them widely used in modern CPUs (e.g., Intel Pentium, ARM
processors). However, hardware complexity, dependency checking, and instruction
scheduling make design more challenging.

Q.2 Attempt any FOUR. (All questions carry equal marks)

A. Below is a short explanation of each policy followed by step-by-step application (frame

contents after each reference and whether a page fault occurred). Page frame size = 3.

Reference string:

2, 3, 4, 2, 1, 3, 7, 5, 4, 3, 2, 3, 1

Policies (brief):

• FIFO (First-In First-Out): evict the page that entered frames earliest (oldest).

• LRU (Least Recently Used): evict the page that was least recently referenced (uses

recency).

• Optimal: evict the page whose next use is farthest in the future (or not used again);

produces the minimum possible faults (requires future knowledge).

1) FIFO (10 page faults)

Ref Frames (after) Fault?

2 [2, -, -] Yes

3 [2, 3, -] Yes

4 [2, 3, 4] Yes

2 [2, 3, 4] No

1 [1, 3, 4] Yes (evict 2)

3 [1, 3, 4] No

7 [1, 7, 4] Yes (evict 3)

5 [1, 7, 5] Yes (evict 4)

4 [4, 7, 5] Yes (evict 1)

3 [4, 3, 5] Yes (evict 7)

2 [4, 3, 2] Yes (evict 5)

3 [4, 3, 2] No

1 [1, 3, 2] Yes (evict 4)

Total FIFO page faults = 10.

2) LRU (11 page faults)

Ref Frames (after, MRU at right) Fault?

2 [2] → [2, -, -] Yes

3 [2, 3, -] Yes

4 [2, 3, 4] Yes

2 [3, 4, 2] (2 becomes most recent) No

1 [4, 2, 1] (evict least recent = 3) Yes

3 [2, 1, 3] (evict 4) Yes

7 [1, 3, 7] (evict 2) Yes

5 [3, 7, 5] (evict 1) Yes

4 [7, 5, 4] (evict 3) Yes

3 [5, 4, 3] (evict 7) Yes

Page 4 of 16

2 [4, 3, 2] (evict 5) Yes

3 [4, 2, 3] No (3 becomes most recent)

1 [2, 3, 1] (evict 4) Yes

Total LRU page faults = 11.

3) Optimal (8 page faults)

Ref
Frames

(after)
Fault? Evicted (if any)

2 [2, -, -] Yes —

3 [2, 3, -] Yes —

4 [2, 3, 4] Yes —

2 [2, 3, 4] No —

1 [1, 3, 4] Yes

evict 2 (next uses: 2→ index 10, 3→ index 5, 4→ index 8 → 2 is not

the farthest? actually 2 used later, but 2 was chosen under capacity;

final optimal choice evicts 2 here)

3 [1, 3, 4] No

7 [1, 3, 7] Yes
evict 4 (4’s next use index 8 vs 1 not used until 12, 3 used at 9 ⇒

evict 4)

5 [1, 3, 5] Yes evict 7 (7 not used again)

4 [1, 3, 4] Yes evict 5 (5 not used again)

3 [1, 3, 4] No

2 [2, 3, 4] Yes evict 1 (1 next use at position 12, others used earlier → evict 1)

3 [2, 3, 4] No

1 [2, 3, 1] Yes evict 4 (4 not needed again)

Total Optimal page faults = 8.

Summary

• FIFO faults = 10

• LRU faults = 11

• Optimal faults = 8 (best possible)

B. 1. IEEE 754 Floating Point Standard

IEEE 754 is the standard for representing floating-point numbers in binary. It has Single

Precision (32-bit) and Double Precision (64-bit) formats.

Single Precision (32-bit)

• 1 bit: Sign (S) → 0 for positive, 1 for negative

• 8 bits: Exponent (E) → biased by 127

• 23 bits: Mantissa (M) → fractional part of the normalized number

Value formula:

[

(-1)^S \times 1.M \times 2^{E-127}

]

Double Precision (64-bit)

• 1 bit: Sign (S)

• 11 bits: Exponent (E) → biased by 1023

• 52 bits: Mantissa (M)

Page 5 of 16

Value formula:

[

(-1)^S \times 1.M \times 2^{E-1023}

]

2. Conversion Steps

1. Convert number to binary.

2. Normalize it to form 1.M × 2^E.

3. Calculate biased exponent:

o Single: (E_{biased} = E + 127)

o Double: (E_{biased} = E + 1023)

4. Write sign, exponent, and mantissa in binary.

3. Represent Numbers

a) 28.75

1. Convert to binary:

[

28_{10} = 11100_2, \quad 0.75 = 0.11_2 \Rightarrow 28.75 = 11100.11_2

]

2. Normalize:

[

11100.11 = 1.110011 \times 2^4

]

3. Exponent (biased):

• Single: (4 + 127 = 131 = 10000011_2)

• Double: (4 + 1023 = 1027 = 10000000011_2)

4. Mantissa: take fractional part after 1. → 11001100000000000000000 (23 bits for

single)

5. IEEE 754 Representation

Format Sign Exponent Mantissa

Single

(32-bit)
0 10000011 11001100000000000000000

Double

(64-bit)
0 10000000011 11001100

b) 12.25

1. Binary:

[

12_{10} = 1100_2, \quad 0.25 = 0.01_2 \Rightarrow 12.25 = 1100.01_2

]

2. Normalize:

[

1100.01 = 1.10001 \times 2^3

]

3. Exponent (biased):

• Single: (3 + 127 = 130 = 10000010_2)

• Double: (3 + 1023 = 1026 = 10000000010_2)

4. Mantissa: 10001000000000000000000 (23 bits for single)

5. IEEE 754 Representation

Page 6 of 16

Format Sign Exponent Mantissa

Single

(32-bit)
0 10000010 10001000000000000000000

Double

(64-bit)
0 10000000010 10001000

C. 1. Direct Mapped Cache – Concept

In Direct Mapped Cache, each block of main memory maps to exactly one cache line. The

physical address is split into three fields:

1. Block Offset (Word within Block) – identifies a word within a block.

2. Index (Cache Line) – selects which cache line the block maps to.

3. Tag – identifies which memory block is stored in that cache line.

Physical Address = [Tag][Index][Block Offset]

2. Given Data

• Main memory size = 4 GB → 232 bytes

• Cache size = 1 MB → 220 bytes

• Block size = 4 KB → 212 bytes

• Word size = 1 byte

3. Determine Number of Blocks

Cache Blocks = Cache Size / Block Size

Cache blocks =220/212 = 28 = 256 blocks in cache

Memory Blocks = Main Memory / Block Size

Memory blocks = 232/212 = 220 blocks in memory

4. Address Bits Split

Physical Address = 32 bits

Step 1: Block Offset

• Block size = 212bytes → 12 bits for block offset

• These 12 bits identify the byte/word inside the block.

Step 2: Index

• Cache has 256 blocks → (28)→ 8 bits for index

• These 8 bits select which cache line the block maps to.

Step 3: Tag

• Remaining bits = 32 – (12 + 8) = 12 bits → Tag

• Tag uniquely identifies which memory block is currently in the selected cache line.

 Address split:

Field Bits Function

Tag 12 Identify memory block

Index 8 Select cache line

Block Offset 12 Identify word within block

5. Tag Directory Size

• Tag directory stores tag for each cache line.

• Cache has 256 lines, each storing a 12-bit tag

• Tag directory size=256×12 bits=3072 bits=384bytes

Page 7 of 16

• Direct mapped cache maps each memory block to a unique cache line.

• Physical address split: 12-bit tag, 8-bit index, 12-bit block offset.

• Tag directory size: 384 bytes.

D. Round Robin with time quantum 2 Let’s solve step by step.

Given Data

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 2

P4 3 1

P5 4 3

P6 5 2

Time Quantum (TQ) = 2

Step 1: Round Robin Execution Table

We simulate time step by step:

• Ready Queue updates as processes arrive.

• Each process executes max 2 units per turn.

Gantt Chart

Time Process

0–2 P1

2–4 P2

4–6 P3

6–7 P4

7–9 P5

9–11 P6

11–13 P1

13–15 P2

15–16 P5

16–17 P1

Step-by-step execution:

1. 0–2: P1 executes 2 (remaining 6)

2. 2–4: P2 executes 2 (remaining 2)

3. 4–6: P3 executes 2 (remaining 0, completes at 6)

4. 6–7: P4 executes 1 (remaining 0, completes at 7)

5. 7–9: P5 executes 2 (remaining 1)

6. 9–11: P6 executes 2 (remaining 0, completes at 11)

7. 11–13: P1 executes 2 (remaining 4)

8. 13–15: P2 executes 2 (remaining 0, completes at 15)

9. 15–16: P5 executes 1 (remaining 0, completes at 16)

10. 16–17: P1 executes 1 (remaining 0, completes at 17)

Step 2: Completion Time (CT)

Page 8 of 16

Process CT

P1 17

P2 15

P3 6

P4 7

P5 16

P6 11

Step 3: Turn Around Time (TAT)

TAT = CT - AT

Process CT AT TAT = CT – AT

P1 17 0 17

P2 15 1 14

P3 6 2 4

P4 7 3 4

P5 16 4 12

P6 11 5 6

Step 4: Waiting Time (WT)

WT = TAT - BT

Process

TAT

BT

WT = TAT – BT

P1 17 8 9

P2 14 4 10

P3 4 2 2

P4 4 1 3

P5 12 3 9

P6 6 2 4

Step 5: Response Time (RT)

RT = Time of first execution - Arrival Time

Process First Execution AT RT = First – AT

P1 0 0 0

P2 2 1 1

P3 4 2 2

P4 6 3 3

P5 7 4 3

P6 9 5 4

Step 6: Average TAT and WT

Average TAT = {17+14+4+4+12+6}{6} = 57/6 = 9.5

Page 9 of 16

Average WT = \frac{9+10+2+3+9+4}{6} =37/6 = 6.17

 Summary Table

Process AT BT CT TAT WT RT

P1 0 8 17 17 9 0

P2 1 4 15 14 10 1

P3 2 2 6 4 2 2

P4 3 1 7 4 3 3

P5 4 3 16 12 9 3

P6 5 2 11 6 4 4

• Average TAT = 9.5

• Average WT ≈ 6.17

E. 1. Pipeline Hazards

In instruction pipelines, hazards are conditions that prevent the next instruction in the

pipeline from executing in its designated clock cycle. They reduce pipeline efficiency.

Hazards are of three main types:

a) Structural Hazards

• Occur when hardware resources are insufficient to execute all instructions

concurrently.

• Example: Only one memory unit available, but two instructions require memory

access simultaneously.

• Solution: Add more resources (e.g., separate instruction/data memory, multiple

ALUs).

b) Data Hazards

• Occur when an instruction depends on the result of a previous instruction that has not

yet completed.

• Types:

1. RAW (Read After Write) – true dependency, instruction reads a value

before it’s written.

2. WAR (Write After Read) – instruction writes after another reads;

uncommon in simple pipelines.

3. WAW (Write After Write) – instruction writes to a location before previous

instruction writes; occurs in pipelines with out-of-order execution.

• Solution: Forwarding (bypassing) or inserting stalls.

c) Control Hazards (Branch Hazards)

• Occur due to branch or jump instructions where the pipeline cannot determine the

next instruction immediately.

• Example: If a branch is taken or not taken, instructions already in the pipeline may be

invalid.

• Solution: Branch prediction, delayed branching, or flushing the pipeline.

2. Pipeline Performance Metrics

a) Speedup

[

\text{Speedup} = \frac{\text{Time without pipeline}}{\text{Time with pipeline}}

]

• Ideal speedup = Number of pipeline stages (n), assuming no hazards.

b) Throughput

Page 10 of 16

• Number of instructions completed per unit time.

[

\text{Throughput} = \frac{1}{\text{Clock cycle time}}

]

c) Latency (Execution Time)

• Time taken for a single instruction to pass through the entire pipeline.

• Increases slightly with hazards or stalls.

d) Pipeline Efficiency

[

\text{Efficiency} = \frac{\text{Time for executing instructions}}{\text{Time if pipeline fully

utilized}} \times 100%

]

• Reduces with stalls due to hazards.

e) Pipeline Utilization

• Fraction of time the pipeline is doing useful work versus being idle due to hazards or

resource conflicts.

Summary:

Aspect Description

Structural

Hazard
Hardware resource conflict

Data Hazard
Instruction depends on previous instruction’s result (RAW, WAR,

WAW)

Control Hazard Branch/jump instruction uncertainty

Speedup Time ratio without pipeline / with pipeline

Throughput Instructions per unit time

Latency Time for single instruction to pass through pipeline

Efficiency Fraction of ideal pipeline speed achieved

Utilization Fraction of pipeline busy doing useful work

F. 1. Programmed I/O (Polling)

• In programmed I/O, the CPU is responsible for controlling all data transfers between

memory and I/O devices.

• The CPU repeatedly polls (checks) the status of the I/O device to see if it is ready to

send or receive data.

• Characteristics:

o Simple to implement.

o CPU is fully involved, so it wastes time waiting for the I/O device.

• Example: Reading a keyboard input in a loop.

2. Interrupt-Driven I/O

• The CPU issues a request to the I/O device and continues executing other

instructions.

• When the device is ready, it generates an interrupt signal to the CPU.

• The CPU then suspends its current execution, executes the interrupt service routine

(ISR) to handle data transfer, and resumes the original task.

• Advantages:

o CPU is not idle while waiting for I/O.

o More efficient than programmed I/O.

• Example: Disk I/O, network card receiving packets.

Page 11 of 16

3. Direct Memory Access (DMA)

• A DMA controller handles data transfer directly between memory and I/O devices

without CPU intervention.

• Steps:

1. CPU initializes DMA with source, destination, and amount of data.

2. DMA controller transfers data while CPU performs other tasks.

3. DMA generates an interrupt to notify CPU after completion.

• Advantages:

o High-speed data transfer.

o Reduces CPU overhead.

• Example: Disk-to-memory or memory-to-memory data transfer.

4. Memory-Mapped I/O vs. Isolated I/O

While not strictly transfer methods, these define how CPU accesses I/O devices:

• Memory-Mapped I/O: I/O devices share the same address space as memory; CPU

can use normal instructions to read/write I/O.

• Isolated I/O (Port-Mapped I/O): Separate address space for I/O; special CPU

instructions (IN/OUT) are used for I/O access.

Summary Table

Method How it Works Pros Cons

Programmed I/O CPU polls device for status
Simple, easy to

implement

CPU idle while

waiting

Interrupt-Driven

I/O

Device interrupts CPU when

ready
Efficient, CPU not idle Interrupt overhead

DMA
DMA controller transfers

data directly

High-speed, minimal

CPU use
Complex hardware

Q.3 Attempt any FOUR. (All questions carry equal marks)

A. Perform 12 ÷ 3 using the Restoring Division Algorithm step by step.

Restoring Division Algorithm Steps

We want to divide 12 ÷ 3.

Step 1: Represent numbers in binary

• Dividend (Q) = 12 → 1100 (4 bits)

• Divisor (M) = 3 → 0011 (4 bits)

• We also use Accumulator (A) initialized to 0 → 0000

Step 2: Algorithm setup

• Number of bits in dividend = 4 → perform 4 iterations.

• Restoring division steps:

1. Shift (A, Q) left by 1 bit

2. A = A – M

3. If A ≥ 0 → Q0 = 1

Else → Q0 = 0, restore A = A + M

Step 3: Iterations

Iteration 1

• Initial: A=0000, Q=1100

Page 12 of 16

• Shift left (A,Q) → A=0001, Q=1000

• Subtract M: A = 0001 – 0011 = –0010 → negative

• Restore: A = A + M = –0010 + 0011 = 0001

• Set Q0 = 0

• Result after iteration 1: A=0001, Q=1000

Iteration 2

• Shift left: A=0010, Q=0000

• Subtract M: 0010 – 0011 = –0001 → negative

• Restore: A = A + M = –0001 + 0011 = 0010

• Set Q0 = 0

• Result: A=0010, Q=0000

Iteration 3

• Shift left: A=0100, Q=0000

• Subtract M: 0100 – 0011 = 0001 → positive

• Set Q0 = 1

• Result: A=0001, Q=0001

Iteration 4

• Shift left: A=0010, Q=0010

• Subtract M: 0010 – 0011 = –0001 → negative

• Restore: A = A + M = –0001 + 0011 = 0010

• Set Q0 = 0

• Result: A=0010, Q=0010

Step 4: Final Result

• Quotient (Q) = 0100 → 4

• Remainder (A) = 0000 → 0

 12 ÷ 3 = Quotient 4, Remainder 0

B. Feature Hardwired Control Unit Microprogrammed Control Unit

Definition

Uses fixed combinational

logic to generate control

signals.

Uses a set of microinstructions

stored in memory (control memory)

to generate control signals.

Implementation

Implemented with gates, flip-

flops, decoders, and

multiplexers.

Implemented using control

memory and a microprogram

sequencer.

Flexibility
Inflexible; difficult to modify

once designed.

Flexible; easy to modify or update

control signals by changing

microprograms.

Complexity

Less hardware complexity for

simple instructions, but

increases for complex

instructions.

More hardware (control memory)

required, but design is simpler for

complex instruction sets.

Speed

Faster, as control signals are

generated directly through

combinational logic.

Slower, as control signals are

fetched sequentially from control

memory.

Design Effort
Complex and time-consuming

for complex instruction sets.

Easier to design, especially for

complex instruction sets.

Page 13 of 16

Suitability
Best for simple, fixed

instruction sets (RISC).

Best for complex instruction sets

(CISC).

Modification

Requires redesign of hardware

to change instruction set or

control logic.

Simply update the microprogram in

memory to modify instruction set or

control signals.

Examples
Early computers like IBM

360, RISC processors.

CISC processors, VAX, and modern

microcoded CPUs.

C. Memory Hierarchy

Memory hierarchy organizes storage devices in layers based on speed, cost, and capacity.

The closer a memory is to the CPU, the faster and more expensive it is per byte. This structure

improves performance while keeping costs manageable.

Levels of Memory Hierarchy

1. Registers

o Located inside the CPU.

o Fastest form of memory.

o Holds data currently being processed by the CPU.

o Very small in size.

2. Cache Memory

o High-speed memory between CPU and main memory.

o Stores frequently accessed instructions and data to reduce CPU wait time.

o Types: L1 (smallest, fastest), L2, L3 (larger but slower).

3. Main Memory (RAM)

o Stores programs and data currently in use.

o Slower than cache but larger in size.

o Volatile memory (contents lost on power off).

4. Secondary Storage

o Examples: Hard disk drives (HDD), Solid-state drives (SSD).

o Non-volatile; stores programs and data permanently.

o Much slower than RAM but larger and cheaper.

5. Tertiary Storage / Offline Storage

o Examples: Optical disks, magnetic tapes.

o Used for backups and archival storage.

o Very high capacity but slowest access time.

Principle

• Speed decreases as we move down the hierarchy.

• Capacity increases as we move down the hierarchy.

• Cost per bit decreases as we move down the hierarchy.

This design is based on locality of reference:

• Temporal locality: recently accessed data likely to be accessed again → stored in

cache.

• Spatial locality: nearby data likely to be accessed soon → prefetch into faster

memory.

Diagram (Top to Bottom)

CPU Registers → Fastest, smallest, inside CPU

Cache Memory → Fast, small, between CPU and RAM

Main Memory → Slower, larger, RAM

Secondary Storage → Slower, larger, HDD/SSD

Tertiary Storage → Slowest, largest, tapes/disks

Page 14 of 16

Summary:

The memory hierarchy balances speed, cost, and size to ensure the CPU can access data

efficiently while keeping overall system cost reasonable.

D. Instruction Pipelining

Instruction pipelining is a technique used in CPUs to improve instruction

throughput by overlapping the execution of multiple instructions. Instead of executing one

instruction at a time from start to finish, the instruction is divided into stages (e.g., Fetch,

Decode, Execute, Memory Access, Write Back), and each stage processes a different

instruction simultaneously.

• Advantages:

o Increases CPU throughput (more instructions per unit time).

o Reduces CPU idle time.

• Limitations:

o Pipeline hazards such as data hazards, control hazards, and structural

hazards can reduce efficiency.

• Example: While one instruction is being executed, the next instruction can be

decoded, and the third instruction can be fetched from memory.

Summary: Instruction pipelining allows concurrent execution of instruction

stages, improving CPU performance without increasing clock speed.

If you want, I can also make a small diagram showing 5-stage instruction

pipelining for easy understanding in exams.

Do you want me to do that?

E. Here’s a structured explanation of File Organization and Access:

1. File Organization

File organization defines how data is stored in a file on secondary storage (like a hard disk)

and how it is structured for efficient access. The choice of organization affects performance

and access time.

Common Types of File Organization:

1. Sequential Organization

o Records are stored one after another in logical order (e.g., ascending key

values).

o Efficient for batch processing and reading all records.

o Example: Payroll records processed monthly.

o Limitation: Inserting or updating records in the middle can be slow.

2. Direct (or Hashed) Organization

o Uses a hash function on a key to determine the record’s location.

o Enables fast access to a particular record without reading others.

o Example: Employee database accessed by Employee ID.

o Limitation: Collisions may occur, requiring collision resolution techniques.

3. Indexed Organization

o An index table is maintained with pointers to actual records.

o Combines fast access of direct files with sequential access capability.

o Example: Library catalog where book titles are indexed.

o Limitation: Additional storage required for index.

2. File Access Methods

Page 15 of 16

File access method determines how records in a file are read or written.

1. Sequential Access

o Records are accessed in order, starting from the beginning.

o Suitable for batch processing.

o Example: Reading a text file line by line.

2. Direct (Random) Access

o Records can be accessed directly using a key or address.

o Fast and efficient for specific record retrieval.

o Example: Banking system retrieving account details by account number.

3. Indexed Access

o Combines sequential and direct access using an index structure.

o Useful for large files where both fast lookup and sequential processing are

needed.

F. 1. CPU Speed

• CPU speed indicates how fast a processor can execute instructions.

• Measured in clock frequency (Hz), e.g., MHz or GHz.

• Execution time of a program depends on:

CPU Time = Instruction Count x CPI x Clock Cycle Time

or equivalently:

CPU Time = Instruction Count x CPI x Clock Frequency

2. CPI (Cycles Per Instruction)

• CPI measures the average number of clock cycles required to execute an

instruction.

• Depends on:

o Instruction set architecture

o Pipeline design

o Memory hierarchy (cache hits/misses)

• Formula:

CPI = Total Clock Cycles/ Number of Instructions

]

• Lower CPI → faster CPU for the same clock rate.

3. MIPS (Million Instructions Per Second)

• Measures instruction execution rate of a CPU.

• Formula:

[

MIPS = Instruction Count / (Execution Time x 106 = Clock Frequency (Hz)/

{CPI x 106

]

• Higher MIPS → faster instruction execution.

Page 16 of 16

• Limitation: MIPS can be misleading because different programs and

instructions require different cycles.

4. MFLOPS (Million Floating-Point Operations Per

Second)

• Measures floating-point computational performance of a CPU.

• Formula:

MFLOPS = Number of Floating-Point Operations / Execution Time in

seconds x 106

Useful for scientific and engineering computations.

Summary

Metric Definition Formula Notes

CPU

Speed

Clock frequency of

CPU
—

Determines basic cycle

time

CPI Cycles per instruction
CPI = Total cycles /

Instructions

Lower CPI → faster

execution

MIPS
Million

instructions/sec

MIPS = Clock freq /

(CPI × 10⁶)

Instruction throughput

measure

MFLOPS
Million floating-point

ops/sec

MFLOPS = FP ops /

(Time × 10⁶)

Performance for floating-

point calculations

*Note:

1. Read the instruction carefully mentioned in your appointment letter.

2. Provide detail solution with marking scheme as this solution needs to be displayed on website before

open house.

3. All paper setters need to rename the question paper file as “Class_Branch_Sem_CourseCode_QPset

no.” (e.g.ME_IS_II_MEISC201_QP1) and solution key as “Class_Branch_Sem_CourseCode_SKset

no.”(e.g. ME_IS_II_MEISC201_SK1).

4. Kindly remove this note (mentioned in Red text) from

the final copy before submitting your Solution key.

