
Page 1 of 11

(Affiliated to University of Mumbai)

End Semester Examination (R-24)

SH 2025

Branch: ECS Course: Data Structure

Year/ Semester: SE III Course code: (ECC302)

Time: 03 hours Marks: 80

Note: 1. All questions are compulsory.

 2. Figures to right indicate full marks.

 3. Assume suitable data wherever necessary.

Marks

Q.1 Attempt any FOUR. (All questions carry equal marks) 20

A. Sketch and explain one linear and one non-linear data structure.

05

B. Explain how stack data structure is used in well form ness of parenthesis.

Given a string s representing an expression containing various types of brackets: {}, (), and

[], the task is to determine whether the brackets in the expression are balanced or not. A

balanced expression is one where every opening bracket has a corresponding closing

bracket in the correct order.
The idea is to put all the opening brackets in the stack. Whenever you hit a closing bracket,

search if the top of the stack is the opening bracket of the same nature. If this holds then

pop the stack and continue the iteration. In the end if the stack is empty, it means all

05

https://www.geeksforgeeks.org/stack-data-structure/

Page 2 of 11

brackets are balanced or well-formed. Otherwise, they are not balanced.

• Step-by-step approach:

• Declare a character stack (say temp).

• Now traverse the string s.

• If the current character is an opening bracket ('(' or '{' or '[') then push it

to stack.

• If the current character is a closing bracket (')' or '}' or ']') and the
closing bracket matches with the opening bracket at the top of stack, then

pop the opening bracket. Else s is not balanced.

• After complete traversal, if some starting brackets are left in the stack then the

expression is not balanced, else balanced.

C. Explain the double ended queue. Explain its types

 The deque represents Double Ended Queue.

 In the queue, the inclusion happens from one end while the erasure happens from

another end.

 The end at which the addition happens is known as the backside while the end at

which the erasure happens is known as front end.

 Deque is a direct information structure in which the inclusion and cancellation

tasks are performed from the two finishes. We can say that deque is a summed up

form of the line.

 Deque can be utilized both as stack and line as it permits the inclusion and

cancellation procedure on the two finishes.

 In deque, the inclusion and cancellation activity can be performed from one side.

The stack adheres to the LIFO rule in which both the addition and erasure can be

performed distinctly from one end; in this way, we reason that deque can be

considered as a stack.

 In deque, the addition can be performed toward one side, and the erasure should be

possible on another end. The queue adheres to the FIFO rule in which the component is

embedded toward one side and erased from another end. Hence, we reason that the deque

can likewise be considered as the queue.

 There are two types of Queues, Input-restricted queue, and output-restricted

queue.

 Information confined queue: The info limited queue implies that a few limitations

are applied to the inclusion. In info confined queue, the addition is applied to one

end while the erasure is applied from both the closures.

Yield confined queue: The yield limited line implies that a few limitations are applied to

05

Page 3 of 11

the erasure activity. In a yield limited queue, the cancellation can be applied uniquely from

one end, while the inclusion is conceivable from the two finishes.

D. Illustrate and write a function to delete a node at the end of single link list

// Function to remove the last node of the linked list
struct Node* removeLastNode(struct Node* head)
{
 // If the list is empty, return NULL
 if (head == NULL) {
 return NULL;
 }

 // If the list has only one node, delete it and return
 // NULL
 if (head->next == NULL) {
 free(head);
 return NULL;
 }

05

E. Construct expression tree for given expression and find the post order traversal for the tree.

a + (b * c) + d * (e + f)

a b c * + d e f + * +

05

Page 4 of 11

Post order

F. What is the meaning of collision in hashing? Explain with an example.

The hashing process generates a small number for a big key, so there is a possibility that

two keys could produce the same value. The situation where the newly inserted key maps to

an already occupied, and it must be handled using some collision handling technology.

05

Q.2 Attempt any FOUR. (All questions carry equal marks) 40

A. Define and explain the stack data structure with suitable example. Give algorithms for

Push, Pop functions.

Insertion: push()

●push() is an operation that inserts elements into the stack. The following is an algorithm

that describes the push() operation in a simpler way.

Algorithm

1 − Checks if the stack is full.

2 − If the stack is full, produces an error and exit.

3 − If the stack is not full, increments top to point next empty space.
4 − Adds data element to the stack location, where top is pointing.

5 − Returns success.

Deletion: pop()

●pop() is a data manipulation operation which removes elements from the stack. The

following pseudo code describes the pop() operation in a simpler way.

●Algorithm

1 − Checks if the stack is empty.

2 − If the stack is empty, produces an error and exit.

3 − If the stack is not empty, accesses the data element at which top is pointing.

4 − Decreases the value of top by 1.

5 − Returns success.

10

B. Illustrate and write functions to add node in a doubly link list for all the cases.
// Function to insert a new node at the front of doubly linked list
struct Node *insertAtFront(struct Node *head, int new_data) {
 // Create a new node
 struct Node *new_node = createNode(new_data);
 // Make next of new node as head
 new_node->next = head;
 // Change prev of head node to new node
 if (head != NULL) {
 head->prev = new_node;
 }
 // Return the new node as the head of the doubly linked list
 return new_node;
}
Main()
head = insertAtFront(head, data);

// Function to insert a new node at the end of the doubly linked list

struct Node* insertEnd(struct Node *head, int new_data) {

 struct Node *new_node = createNode(new_data);

 // If the linked list is empty, set the new node as the head

 if (head == NULL) {

 head = new_node;

 } else {

10

Page 5 of 11

 struct Node *curr = head;

 while (curr->next != NULL) {

 curr = curr->next;

 }

 // Set the next of last node to new node

 curr->next = new_node;

 // Set prev of new node to last node

 new_node->prev = curr;

 }

 return head;

}
// Function to insert a new node at a given position
struct Node* insertAtPosition(struct Node *head, int pos, int new_data) {
 // Create a new node
 struct Node *new_node = createNode(new_data);
 // Insertion at the beginning
 if (pos == 1) {
 new_node->next = head;
 // If the linked list is not empty, set the prev of head to new node
 if (head != NULL) {
 head->prev = new_node;
 }
 // Set the new node as the head of linked list
 head = new_node;
 return head;
 }
 struct Node *curr = head;

C. Construct huffman tree for the following

Characters a e i o u s t

Frequencies 10 15 12 3 4 13 1

10

Page 6 of 11

D. Describe the three common binary tree traversal methods (inorder, preorder, postorder).

Perform these traversals on the following binary tree and show the output:

10

E. Write the algorithm for topological sorting and perform the same on the graph given below

10

F. Describe hash function using mid square method and folding method with example.

The mid-square method is a very good hashing method. It involves two steps to compute

10

Page 7 of 11

the hash value-

 Square the value of the key k i.e. k2

 Extract the middle r digits as the hash value.

Page 8 of 11

Q.3 Attempt any FOUR 20

A. Given a stack of Size 4 perform following operations in sequencePush(12), Push(25), Push

(33), Pop(), Push(47), Push(51), Push(66),

i)Determine the state of stack after each operation

ii)Identify if any overflow or underflow conditions occur.

Consider a stack of size 4. Initially, the stack is empty. After the first operation Push(12),

the stack becomes [12] with 12 at the top. The next operation Push(25) adds another

element, making the stack [12, 25]. Then Push(33) adds one more element, resulting in [12,

25, 33]. When the Pop() operation is performed, the top element 33 is removed, leaving the

stack as [12, 25]. The next operation Push(47) adds a new element to the top, so the stack

becomes [12, 25, 47]. After that, Push(51) fills the last available space, giving [12, 25, 47,

51], which makes the stack full. When the next operation Push(66) is attempted, it cannot

be added because the stack has reached its maximum capacity, leading to a Stack Overflow

condition. No Underflow occurs in this sequence since the stack is never empty when a

pop operation is performed.

05

B. Sketch and explain different types of link list

A singly linked list is the simplest type of linked list in which each node contains two parts

— one for storing data and another for storing the address of the next node in the sequence.

The last node points to NULL, indicating the end of the list. Traversal in a singly linked list

is possible only in one direction, starting from the head node and moving toward the last

node. It is easy to implement and uses less memory compared to other linked lists, but it

05

Page 9 of 11

does not allow backward movement, making certain operations like reverse traversal or

deletion of the last node less efficient.

A doubly linked list extends the concept of the singly linked list by adding a pointer to the

previous node along with the next pointer. Each node in a doubly linked list therefore

contains three parts — the previous pointer, data, and the next pointer. This structure allows

traversal in both directions — forward and backward — providing greater flexibility in

insertion and deletion operations. However, the additional pointer increases memory usage

and makes implementation slightly more complex compared to a singly linked list.

A circular linked list is a variation in which the last node is connected back to the first

node, forming a circular structure. This can be implemented as either a singly or a doubly

circular linked list. In a circular singly linked list, the next pointer of the last node points to

the first node, while in a circular doubly linked list, both the first and last nodes are linked

to each other in both directions. Circular linked lists are especially useful in applications

like round-robin scheduling, real-time systems, and continuous data processing, where

the data structure needs to be accessed in a repeating cycle.

C. Differentiate between array and link list

05

D. Explain Left-Left and Left-Right rotation in AVL tree with example

Left-Left Rotation:

• Occurs when a node is inserted into the left subtree of the left child, causing the

balance factor to become more than +1.

• Fix: Perform a single right rotation.

05

Page 10 of 11

Left-Right Rotation:

• Occurs when a node is inserted into the right subtree of the left child,which

disturbs the balance factor of an ancestor node, making it left-heavy.

• Fix: Perform a left rotation on the left child, followed by a rightrotation on the

node.

E. Write a short note on B trees

A B Tree of order m can be defined as an m-way search tree which satisfies thefollowing

properties:

• All leaf nodes of a B tree are at the same level, i.e. they have the same depth(height

of the tree).

• The keys of each node of a B tree (in case of multiple keys), should be stored inthe

ascending order.

• In a B tree, all non-leaf nodes (except root node) should have atleast m/2 children.

• All nodes (except root node) should have at least m/2 - 1 keys.

• If the root node is a leaf node (only node in the tree), then it will have no

childrenand will have at least one key. If the root node is a non-leaf node, then it

will haveat least 2 children and at least one key.

• A non-leaf node with n-1 key values should have (n) non NULL children.

• We can see in the above diagram that all the leaf nodes are at the same leveland all

non-leaf nodes have no empty sub-tree and have number of keys oneless than the
number of their children.

05

F. Illustrate the Adjacency list and adjacency matrix for the graph given below. 05

Page 11 of 11

 *********All the Best*********

