Wi

N

£

Teehnology samoamo|

SIES
RISE WITH EDUCATION SH 2025

(Affiliated to University of Mumbai)

End Semester Examination (R-24)

Branch: ECS Course: Data Structure

Year/ Semester: SE III Course code: (ECC302)

Time: 03 hours Marks: 80

Note: 1. All questions are compulsory.

2. Figures to right indicate full marks.
3. Assume suitable data wherever necessary.

Marks

Q.1

Attempt any FOUR. (All questions carry equal marks)

20

A.

Sketch and explain one linear and one non-linear data structure.

Short Descriptions of various Data Structures
Array:

Amit Jatin Rajesh | Naveen | Sonia

d 2 3 -+ 5

v ltis the linear collection of finite number of homogeneous data
elements.

v If we consider an array with elements then elements of the array will
be referred using index set consisting of consecutive numbers i.e. The
elements of an array can be referred by using different notations:

v When array is stored into the computer’s memory, its elements
occupies the consecutive memory locations.

v The total number of elements in an array is known as the size of that a
array and can be calculated by using a simple formula:

v Where is the lower index of the array and is the upper index of the
array.

v Programming languages also support multidimensional arrays.

Short Descriptions of various Data Structures

Lata

Tree: T R

Lakshen: Plara Singh

/\/\

AN AN N
v Tree is a non-linear kind of data structure which is used to
represent data elements having hierarchical relationship between
them.
v Tree structure is also referred as parent child relationship. The
basic difference between linear and non linear data structures is that
in linear data structures, for each element there is a fixed next
element but in case of non-linear data structure each element can
have many different next elements.
v A very common example is the ancestor tree as shown in figure.
This tree shows the ancestors of Lata. Her parents are Lakshmi and
Piyara Singh. Lakshmi's parents are Shanti and Suresh Kumar.
Piyara Singh’s parents are Kalyani and Sunder Singh and so on.

05

Explain how stack data structure is used in well form ness of parenthesis.

Given a string s representing an expression containing various types of brackets: {}, (), and
[1, the task is to determine whether the brackets in the expression are balanced or not. A
balanced expression is one where every opening bracket has a corresponding closing

bracket in the correct order.

The idea is to put all the opening brackets in the stack. Whenever you hit a closing bracket,
search if the top of the stack is the opening bracket of the same nature. If this holds then
pop the stack and continue the iteration. In the end if the stack is empty, it means all

05

Page 1 0of 11

https://www.geeksforgeeks.org/stack-data-structure/

brackets are balanced or well-formed. Otherwise, they are not balanced.
o Step-by-step approach:
e Declare a character stack (say temp).
e Now traverse the string s.

o [fthe current character is an opening bracket ('("or '{' or '[") then push it
to stack.

o [fthe current character is a closing bracket ()" or '} or ']") and the
closing bracket matches with the opening bracket at the top of stack, then
pop the opening bracket. Else s is not balanced.

o After complete traversal, if some starting brackets are left in the stack then the
expression is not balanced, else balanced.

Explain the double ended queue. Explain its types 05

L} The deque represents Double Ended Queue.

LI In the queue, the inclusion happens from one end while the erasure happens from
another end.

[1 The end at which the addition happens is known as the backside while the end at
which the erasure happens is known as front end.

I Deque is a direct information structure in which the inclusion and cancellation
tasks are performed from the two finishes. We can say that deque is a summed up
form of the line.

[} Deque can be utilized both as stack and line as it permits the inclusion and
cancellation procedure on the two finishes.

[1 In deque, the inclusion and cancellation activity can be performed from one side.
The stack adheres to the LIFO rule in which both the addition and erasure can be
performed distinctly from one end; in this way, we reason that deque can be

considered as a stack.
0 1 2 3 4

In deque, the addition can be performed toward one side, and the erasure should be
possible on another end. The queue adheres to the FIFO rule in which the component is
embedded toward one side and erased from another end. Hence, we reason that the deque
can likewise be considered as the queue.

-+

v 0 1 2 3 4

L} There are two types of Queues, Input-restricted queue, and output-restricted
queue.

Ll Information confined queue: The info limited queue implies that a few limitations
are applied to the inclusion. In info confined queue, the addition is applied to one
end while the erasure is applied from both the closures.

L=
(_012341

Yield confined queue: The yield limited line implies that a few limitations are applied to

Page 2 of 11

the erasure activity. In a yield limited queue, the cancellation can be applied uniquely from
one end, while the inclusion is conceivable from the two finishes.

5 =
4

[lustrate and write a function to delete a node at the end of single link list 05
Deletion At End of Linked List
Head NULL
L.
l After Deletion
Head NULL
L 3 —> 12 J
// Function to remove the last node of the linked list
struct Node* removeLastNode(struct Node* head)
{
// If the list is empty, return NULL
if (head == NULL) {
return NULL;
}
// 1f the list has only one node, delete it and return
/I NULL
if (head->next == NULL) {
free(head);
return NULL;
¥
Construct expression tree for given expression and find the post order traversal for the tree. 05

at(*c)+d*(e+1

abc*+def+*+

Page 3 of 11

Post order

F. What is the meaning of collision in hashing? Explain with an example. 05
The hashing process generates a small number for a big key, so there is a possibility that
two keys could produce the same value. The situation where the newly inserted key maps to
an already occupied, and it must be handled using some collision handling technology.
Q.2 Attempt any FOUR. (All questions carry equal marks) 40
A. Define and explain the stack data structure with suitable example. Give algorithms for 10
Push, Pop functions.
Insertion: push()
epush() is an operation that inserts elements into the stack. The following is an algorithm
that describes the push() operation in a simpler way.
Algorithm
1 — Checks if the stack is full.
2 — If the stack is full, produces an error and exit.
3 — If the stack is not full, increments top to point next empty space.
4 — Adds data element to the stack location, where top is pointing.
5 — Returns success.
Deletion: pop()
epop() is a data manipulation operation which removes elements from the stack. The
following pseudo code describes the pop() operation in a simpler way.
e Algorithm
1 — Checks if the stack is empty.
2 — If the stack is empty, produces an error and exit.
3 — If the stack is not empty, accesses the data element at which top is pointing.
4 — Decreases the value of top by 1.
5 — Returns success.
B. Ilustrate and write functions to add node in a doubly link list for all the cases. 10

// Function to insert a new node at the front of doubly linked list
struct Node *insertAtFront(struct Node *head, int new_data) {
// Create a new node
struct Node *new_node = createNode(new_data);
// Make next of new node as head
new_node->next = head;
// Change prev of head node to new node
if (head !=NULL) {
head->prev = new_node;
}
// Return the new node as the head of the doubly linked list
return new_node;
¥
Main()
head = insertAtFront(head, data);

// Function to insert a new node at the end of the doubly linked list
struct Node* insertEnd(struct Node *head, int new_data) {
struct Node *new node = createNode(new_data);
// If the linked list is empty, set the new node as the head
if (head == NULL) {
head = new_node;
} else {

Page 4 of 11

struct Node *curr = head,;
while (curr->next != NULL) {
curr = curr->next;
)
// Set the next of last node to new node
curr->next = new_node;
// Set prev of new node to last node
new_node->prev = curr;
}

return head;

// Function to insert a new node at a given position
struct Node* insertAtPosition(struct Node *head, int pos, int new_data) {
// Create a new node
struct Node *new_node = createNode(new_data);
// Insertion at the beginning
if (pos==1) {
new_node->next = head;
// If the linked list is not empty, set the prev of head to new node
if (head !=NULL) {
head->prev = new_node;
}
// Set the new node as the head of linked list
head = new_node;
return head;

}

struct Node *curr = head;

Construct huffman tree for the following
Characters a e i 0

Frequencies 10 15 12 3

/U
i(12) s(13) e(15) [18]

A
[8] a(1e)
/A
[4] u(4)
VY
t(1) o(3)

10

Page 5 of 11

Character Huffman Code
i 00
s 01
e 10
a 111
u 1101
t 11000
o 11001
Describe the three common binary tree traversal methods (inorder, preorder, postorder). 10
Perform these traversals on the following binary tree and show the output:
Write the algorithm for topological sorting and perform the same on the graph given below 10
'|3 Since elements are pushed onto the stack in the reverse order of their
dependencies.
e o 0 1 2 3 4 5
sac=| 5 [4] 2 3] 1] 0]
*
o
@ (D [clils[zl+s]
o The final topological order is obtained
by reversing the stack
Topological Sorting using DFS
< >
Describe hash function using mid square method and folding method with example. 10
The mid-square method is a very good hashing method. It involves two steps to compute

Page 6 of 11

the hash value-
1 Square the value of the key k i.e. k2
I Extract the middle r digits as the hash value.

Formula:

h(K) = h(k x k)

Here,

k is the key value.

The value of r can be decided based on the size of the table.

Example:
Suppose the hash table has 100 memory locations. So r = 2 because two digits are

required to map the key to the memory location.

k=60

kx k=60x60
= 3600

h(60) = 60

The hash value obtained is 60

Formula:

k=kl1, k2, k3, k4,, kn
s=kl+ k2 + k3 + k4 +....+ kn
h(K)=s

Here,
s is obtained by adding the parts of the key k

Page 7 of 11

Example:

k =12345
kl=12 k2=34,k3=5
s=k1+k2+k3
=12+34+5

=51

h(K) = 51

Q.3

Attempt any FOUR

20

Given a stack of Size 4 perform following operations in sequencePush(12), Push(25), Push
(33), Pop(), Push(47), Push(51), Push(66),

i)Determine the state of stack after each operation

ii)ldentify if any overflow or underflow conditions occur.

Consider a stack of size 4. Initially, the stack is empty. After the first operation Push(12),
the stack becomes [12] with 12 at the top. The next operation Push(25) adds another
element, making the stack [12, 25]. Then Push(33) adds one more element, resulting in [12,
25, 33]. When the Pop() operation is performed, the top element 33 is removed, leaving the
stack as [12, 25]. The next operation Push(47) adds a new element to the top, so the stack
becomes [12, 25, 47]. After that, Push(51) fills the last available space, giving [12, 25, 47,
51], which makes the stack full. When the next operation Push(66) is attempted, it cannot
be added because the stack has reached its maximum capacity, leading to a Stack Overflow
condition. No Underflow occurs in this sequence since the stack is never empty when a
pop operation is performed.

05

Sketch and explain different types of link list

ENET ENE) EEEN

100 200 300
head

- —
[Nt | 1| 200 b 100 | > | 300 P 200 | s [wuns

100 200 300
head

[{ 2 next}—{ 3 next}———b[4 nex‘(]-']_laSt

A singly linked list is the simplest type of linked list in which each node contains two parts
— one for storing data and another for storing the address of the next node in the sequence.
The last node points to NULL, indicating the end of the list. Traversal in a singly linked list
is possible only in one direction, starting from the head node and moving toward the last
node. It is easy to implement and uses less memory compared to other linked lists, but it

05

Page 8 of 11

does not allow backward movement, making certain operations like reverse traversal or
deletion of the last node less efficient.

A doubly linked list extends the concept of the singly linked list by adding a pointer to the
previous node along with the next pointer. Each node in a doubly linked list therefore
contains three parts — the previous pointer, data, and the next pointer. This structure allows
traversal in both directions — forward and backward — providing greater flexibility in
insertion and deletion operations. However, the additional pointer increases memory usage
and makes implementation slightly more complex compared to a singly linked list.

A circular linked list is a variation in which the last node is connected back to the first
node, forming a circular structure. This can be implemented as either a singly or a doubly
circular linked list. In a circular singly linked list, the next pointer of the last node points to
the first node, while in a circular doubly linked list, both the first and last nodes are linked
to each other in both directions. Circular linked lists are especially useful in applications
like round-robin scheduling, real-time systems, and continuous data processing, where
the data structure needs to be accessed in a repeating cycle.

Differentiate between array and link list 05
Parameter Array Linked List
Size Specified during | No need to specify: grow
declaration. and shrink during
execution.
Storage Allocation Element location is|Element position is
allocated during | assigned during run time.
compile time.
Order of the elements |Stored consecutively |Stored randomly
Accessing the element |Direct or randomly | Sequentially accessed.
accessed. 1.e..|ie.. Traverse starting
Specify the amray|from the first node in the
index or subscript. list by the pointer.
Insertion and deletion|Slow relatively as|Easier. fast and efficient.
of element shifting is required.
Searching Binary search and |linear search
linear search
Memory required less More
Memory Utilization Ineffective Efficient
Explain Left-Left and Left-Right rotation in AVL tree with example 05

Left-Left Rotation:
e Occurs when a node is inserted into the left subtree of the left child, causing the
balance factor to become more than +1.
e Fix: Perform a single right rotation.

Page 9 of 11

|
Left unbalanced tree 02| rertormng right rotation

30) (3'0'
e Node '30' has a balance e To achieve balance in

the tree, a right

Vs factorof +2, which lies Yy s
20 | outside the acceptable 20 rotation is performed
— range of -1 to +1, . on nodes 20 and 30
o lol
(10) _.
Lo i b S
03 Balanced tree
ey
0

{20) The tree is balanced
b 4 now, with all node
balance factors within
P the valid range.
=y (30)

Left-Right Rotation:
e Occurs when a node is inserted into the right subtree of the left child,which
disturbs the balance factor of an ancestor node, making it left-heavy.

e Fix: Perform a left rotation on the left child, followed by a rightrotation on the
node.

11 | unbalanced tree 02
» s

Ferforming ieft rotatsan

Node 30" has a balance To achieve balance in
1 g factor of +2, which lies 5 the tree, a left

10 outside the acceptable rotation is performed
rangeof -1to +1. & on nodes 10 and 20
o>

93 Unbalanced tree
+2
30
we need to perform
" = right rotation on
z nodes 30 and 20 to
0 balanced the tree
Nl‘
Write a short note on B trees 05
A B Tree of order m can be defined as an m-way search tree which satisfies thefollowing

properties:

e Allleaf nodes of a B tree are at the same level, i.e. they have the same depth(height
of the tree).

e The keys of each node of a B tree (in case of multiple keys), should be stored inthe
ascending order.

e Ina B tree, all non-leaf nodes (except root node) should have atleast m/2 children.

e All nodes (except root node) should have at least m/2 - 1 keys.

e Ifthe root node is a leaf node (only node in the tree), then it will have no
childrenand will have at least one key. If the root node is a non-leaf node, then it
will haveat least 2 children and at least one key.

e A non-leaf node with n-1 key values should have (n) non NULL children.

e We can see in the above diagram that all the leaf nodes are at the same leveland all
non-leaf nodes have no empty sub-tree and have number of keys oneless than the
number of their children.

[lustrate the Adjacency list and adjacency matrix for the graph given below. 05

Page 10 of 11

*********All the Best*********

Page 11 of 11

