


 (Affiliated to University of Mumbai)		End Semester Examination (R-24)SH 2025 Answer Key with marking scheme
Branch: EXTC	Course: Electronic Devices and Circuit	
Year/ Semester: SE/ III	Course code:ETC 302	
Time: 03 hours	Marks: 80	
		Marks
Q. 1	Attempt any FOUR. (All questions carry equal marks)	
A.	Diagram of CE-CE multistage amplifier---- 3 Marks Comment on its voltage gain... 2Marks	5
B.	Differentiate small signal and Large signal amplifier ---- Any 7 Point	5
C.	Diagram --- 1 Mark working principle of Zener diode---2 Mark characteristics and applications.--- 2 Marks	5
D.	Q point for the fixed-bias configuration. Also Determine V_b and V_c $I_{BQ} = \frac{V_{CC} - V_{BE}}{R_B} = \frac{12 \text{ V} - 0.7 \text{ V}}{240 \text{ k}\Omega} = 47.08 \mu\text{A}$ $I_{CQ} = \beta I_{BQ} = (50)(47.08 \mu\text{A}) = 2.35 \text{ mA}$ $V_{CEQ} = V_{CC} - I_{CQ}R_C$ $= 12 \text{ V} - (2.35 \text{ mA})(2.2 \text{ k}\Omega)$ $= 6.83 \text{ V}$ $V_B = V_{BE} = 0.7 \text{ V}$ $V_C = V_{CE} = 6.83 \text{ V}$	5
E.	Region of operation of MOSFET Diagram : 2 Marks Explanation: 3 Marks	5
F.	Statement of Miller Theorem : 2.5 Marks Explanation Miller's Theorem: 2.5 Marks	5
Q.2	Attempt any FOUR. (All questions carry equal marks)	
A.	N-channel JFET. Construction : 3 Marks Working : 4 Marks	10 Marks

	Characteristics : 3 Marks	
B.	<p>Expression for the small-signal voltage gain and input resistance of common-emitter circuit with an emitter resistor.</p> <p>Diagram basic circuit : 2 Marks</p> <p>Equivalent Hybrid Pi model : 2 Marks</p> <p>Derivation : 6 Marks</p>	10
C.	<p>Small-signal voltage gain and input of a common-source amplifier. The parameters are: $VDD = 3.3$ V, $RD = 10$ k, $R1 = 140$ k, $R2 = 60$ k, and $RSi = 4$ k. The transistor parameters are: $VTN = 0.4$ V, $Kn = 0.5$ mA/V², and $\lambda = 0.02$ V⁻¹.</p>	10

	<p>Solution (dc calculations): The dc or quiescent gate-to-source voltage is</p> $V_{GSQ} = \left(\frac{R_2}{R_1 + R_2} \right) (V_{DD}) = \left(\frac{60}{140 + 60} \right) (3.3) = 0.99 \text{ V}$ <p>The quiescent drain current is</p> $I_{DQ} = K_n (V_{GSQ} - V_{TN})^2 = (0.5)(0.99 - 0.4)^2 = 0.174 \text{ mA}$ <p>and the quiescent drain-to-source voltage is</p> $V_{DSQ} = V_{DD} - I_{DQ} R_D = 3.3 - (0.174)(10) = 1.56 \text{ V}$ <p>Since $V_{DSQ} > V_{GSQ} - V_{TN}$, the transistor is biased in the saturation region.</p> <p>Small-signal Voltage Gain: The small-signal transconductance g_m is then</p> $g_m = 2\sqrt{K_n I_{DQ}} = 2\sqrt{(0.5)(0.174)} = 0.590 \text{ mA/V}$ <p>and the small-signal output resistance is</p> $r_o = \frac{1}{\lambda I_Q} = \frac{1}{(0.02)(0.174)} = 287 \text{ k}\Omega$ <p>The input resistance to the amplifier is</p> $R_i = R_1 \parallel R_2 = 140 \parallel 60 = 42 \text{ k}\Omega$ <p>From Figure 4.15 and Equation (4.29), the small-signal voltage gain is</p> $A_v = -g_m (r_o \parallel R_D) \left(\frac{R_i}{R_i + R_{Si}} \right) = -(0.59)(287 \parallel 10) \left(\frac{42}{42 + 4} \right)$ <p>or</p> $A_v = -5.21$	
D.	Draw and explain high frequency model for BJT in CE configuration Diagram High Frequency model : 4 Marks Explanation : 6 Marks	5
E.	Expression for Z_i , Z_o and A_V for CS E- MOSFET amplifier using hybrid pi model Diagram basic circuit : 2 Marks Equivalent Hybrid Pi model : 2 Marks Derivation : 6 Marks	5
F.	Corner frequency and maximum gain of a bipolar common emitter Circuit with a coupling capacitor. The parameters are: $R_1 = 51.2 \text{ k}\Omega$, $R_2 = 9.6 \text{ k}\Omega$, $R_C = 2 \text{ k}\Omega$, $R_E = 0.4 \text{ k}\Omega$, $R_{Si} = 0.1 \text{ k}\Omega$, $C_C = 1 \mu\text{F}$, and $V_{CC} = 10 \text{ V}$. The transistor parameters are: $V_{BE(on)} = 0.7 \text{ V}$, $\beta = 100$, and $V_A = \infty$.	5

Solution: From a dc analysis, the quiescent collector current is $I_{CQ} = 1.81 \text{ mA}$. The small-signal parameters are $g_m = 69.6 \text{ mA/V}$ and $r_\pi = 1.44 \text{ k}\Omega$.

The input resistance is

$$R_i = R_1 \parallel R_2 \parallel [r_\pi + (1 + \beta)R_E] \\ = 51.2 \parallel 9.6 \parallel [1.44 + (101)(0.4)] = 6.77 \text{ k}\Omega$$

and the time constant is therefore

$$\tau_S = (R_{Si} + R_i)C_C = (0.1 \times 10^3 + 6.77 \times 10^3)(1 \times 10^{-6}) \Rightarrow 6.87 \text{ ms}$$

The corner frequency is

$$f_L = \frac{1}{2\pi\tau_S} = \frac{1}{2\pi(6.87 \times 10^{-3})} = 23.2 \text{ Hz}$$

Finally, the maximum voltage gain magnitude is

$$|A_v|_{\max} = \frac{g_m r_\pi R_C}{(R_{Si} + R_i)} \left(\frac{R_B}{R_B + R_{ib}} \right)$$

where

$$R_{ib} = r_\pi + (1 + \beta)R_E = 1.44 + (101)(0.4) = 41.8 \text{ k}\Omega$$

Q.3	Attempt any FOUR	5
A.	Diagram : 1 Mark Characteristics : 1 Mark Explanation : 3 marks	5
B.	Need of biasing circuits---- 3 Marks list different biasing circuits for BJT---- 2 Marks	5
C.	Explanation effect of coupling capacitor on frequency response of a single stage CE amplifier... 2.5 Marks . effect of bypass capacitor on frequency response of a single stage CE amplifier...	5

	2.5 Marks .	
D.	Explain concept of multistage amplifier.---2.5 Marks State its advantage and Disadvantage.--- 2.5 Marks	5
E.	cross over distortion in Class B power amplifier. Graph : 2 Marks Explanation : 3 Marks	5
F.	Draw Voltage divider circuit for E MOSFET. Derive Q point expression for same. Circuit Diagram : 2 Marks Derivation : 3 Marks	5