

Q.1 Attempt any FOUR (20 Marks)

A. Construct DFA over $\{0,1\}$ that accepts all strings containing substring “010” – 05 Marks

Key Answer: DFA with states tracking sequence “010”, accept in final state.

Marks: DFA components – 2, Transitions – 2, Accepting state – 1

B. Explain the process converting CFG into GNF – 05 Marks

Key Answer: Remove useless symbols, ϵ -productions, unit productions, left recursion, then ensure all productions start with terminal.

Marks: Each step – 1

C. Design PDA for $L = \{0^n 1^n \mid n \geq 1\}$ – 05 Marks

Key Answer: Push 0's, pop for 1's, accept by final state.

Marks: Concept – 2, Transition – 3

D. Using Pumping Lemma, prove $L = \{a^n b^n c^n \mid n \geq 1\}$ is not regular – 05 Marks

Key Answer: Assume regular, take $s = a^p b^p c^p$, divide xyz, pumping y breaks pattern \rightarrow contradiction.

Marks: Assume $s = 1$, Divide xyz – 1, Pumping y – 1, Contradiction – 2

E. Write short notes on Recursive and Recursively Enumerable languages – 05 Marks

Key Answer: Recursive: decidable by TM; RE: TM accepts but may not halt for non-members.

Marks: Definition – 2, Example/Difference – 3

F. Explain Equivalence Relation with example and properties – 05 Marks

Key Answer: Reflexive, Symmetric, Transitive; Example: equality on integers.

Marks: Definition – 2, Properties – 2, Example – 1

Q.2 Attempt any FOUR (40 Marks)

A. Design Moore machine to output A if ends in “010”, else B – 10 Marks

Key Answer: States track last 3 input bits; output A for “010”, else B.

Marks: States – 4, Transitions – 4, Output correctness – 2

B. Convert CFG into CNF: $S \rightarrow pSqq \mid pSq \mid pp \mid q \mid p \mid qq$ – 10 Marks

Key Answer: Remove ϵ /unit productions, break RHS into max 2 symbols, convert to CNF.

Marks: Steps – 6, Correct CNF – 4

C. Design PDA for $L = \{(ab)^n c^n \mid n \geq 1\}$ with example – 10 Marks

Key Answer: Push 'ab' for each n, pop for c's, accept by final state.

Marks: PDA components – 3, Transitions – 4, Example – 3

*D. Convert RE $a(a+b)b \rightarrow$ equivalent NFA then DFA – 10 Marks

Key Answer: Step 1: Construct NFA (Thompson), Step 2: Convert NFA \rightarrow DFA.

Marks: NFA – 5, DFA – 5

E. Construct leftmost derivation, rightmost derivation, parse tree for “aabb” using $S \rightarrow aSb \mid ab$ – 10 Marks

Key Answer: Leftmost: $S \rightarrow aSb \rightarrow aaSbb \rightarrow aabb$; Rightmost: $S \rightarrow aSb \rightarrow aabSb \rightarrow aabb$; Parse tree drawn.

Marks: Leftmost – 3, Rightmost – 3, Parse tree – 4

F. Design TM for $L = \{ww^R\}$ with example – 10 Marks

Key Answer: TM scans input, compares ends to middle; accept if palindrome.

Marks: States – 4, Transition – 4, Example – 2

Q.3 Attempt any FOUR (20 Marks)

A. Design FSM for binary strings with even number of 0's and even number of 1's – 05 Marks

Key Answer: FSM with 4 states tracking parity of 0's and 1's (even-even, even-odd, odd-even, odd-odd); accept in even-even state.

Marks Distribution: States – 2, Transitions – 2, Acceptance – 1

B. Explain the Halting Problem – 05 Marks

Key Answer: Problem of deciding whether a Turing Machine halts on a given input; proven undecidable by contradiction.

Marks Distribution: Definition – 2, Explanation/Reasoning – 3

C. Explain PDA operation – 05 Marks

Key Answer: PDA reads input, uses stack for memory, performs push/pop according to transitions, accepts by final state or empty stack.

Marks Distribution: Operation – 3, Example – 2

D. Construct DFA for strings over {a,b} where every ‘a’ is immediately followed by at least one ‘b’ – 05 Marks

Key Answer: DFA with states tracking last symbol; reject if 'a' not followed by 'b'.

Marks Distribution: States – 2, Transitions – 2, Acceptance – 1

E. Define Regular Expression and discuss equivalence with Finite Automata – 05 Marks

Key Answer: Regular Expression: symbolic representation of string sets; equivalent to FA since any RE can be converted to NFA/DFA and vice versa.

Marks Distribution: Definition – 2, Equivalence explanation – 3

F. Explain Chomsky Hierarchy – 05 Marks

Key Answer: Classification of grammars:

- Type 0 – Unrestricted (TM)
- Type 1 – Context-Sensitive
- Type 2 – Context-Free
- Type 3 – Regular

Marks Distribution: Classification – 3, Explanation/Examples – 2