

DEPARTMENT OF ARTIFICIAL INTELLIGENCE MACHINE LEARNING

Course Outcomes

Second Year: III SEM (REV-2019 'C' Scheme)

Course	
Code:	CSC 301
Course:	Applied Mathematics III
CO-1	Understand the concept of Laplace transform and its application to solve the real integrals in engineering problems.
CO-2	Understand the concept of inverse Laplace transform of various functions and its applications in engineering problems.
CO-3	Expand the periodic function by using the Fourier series for real-life problems and complex engineering problems
CO-4	Understand complex variable theory, application of harmonic conjugate to get orthogonal trajectories and analytic functions.
CO-5	Apply the concept of Correlation and Regression to the engineering problems in data science, machine learning, and AI.
CO-6	Understand the concepts of probability and expectation for getting the spread of the data and distribution of probabilities.
Course	
Code:	CSC 302
Course:	Discrete Structures and Graph Theory
CO-1	Understand the notion of mathematical thinking, mathematical proofs and to apply them in problem solving.
CO-2	Ability to reason logically.
CO-3	Ability to understand relations, functions, Diagraph and Lattice.
CO-4	Ability to understand and apply concepts of graph theory in solving real world problems.
CO-5	Understand use of groups and codes in Encoding-Decoding
CO-6	Analyze a complex computing problem and apply principles of discrete mathematics to identify solutions.

Course	CSC 303
Code:	
Course:	Data Structures
CO-1	Students will be able to implement Linear and Non-Linear data structures.
CO-2	Students will be able to handle various operations like searching, insertion, deletion and traversals on various data structures.
CO-3	Students will be able to explain various data structures, related terminologies and its types.
CO-4	Students will be able to choose appropriate data structure and apply it to solve problems in various domains.
CO-5	Students will be able to analyze and implement appropriate searching techniques for a given problem.
CO-6	Students will be able to demonstrate the ability to analyze, design, apply and use data structures to solve engineering problems and evaluate their solutions.

Course	CSC 304
Code:	~
Course:	Digital Logic and Computer Architecture
CO-1	To illustrate different number systems and basic structure of computer systems.
CO-2	To demonstrate the arithmetic algorithms.
CO-3	To articulate the basic concepts of digital components and processor organization.
CO-4	To indicate the generation of control signals of computers
CO-5	To demonstrate the memory organization.
CO-6	To describe the concepts of parallel processing and different Buses.

Course	CSC 305
Code:	
Course:	Computer Graphics
CO-1	Describe the basic concepts of Computer Graphics
CO-2	Demonstrate various algorithms for basic graphics primitives
CO-3	Apply 2-D geometric transformations on graphical objects
CO-4	Use various Clipping algorithms on graphical objects
CO-5	Explore 3-D geometric transformations, curve representation techniques and projections methods
CO-6	Explain visible surface detection techniques and Animation

Course	CSL 301
Code:	
Course:	Data Structures Lab
CO-1	Students will be able to implement various linear and nonlinear data structures.
CO-2	Students will be able to handle operations like insertion, deletion, searching and traversing on various data structures

Course	CSL 302
Code:	
Course:	Digital Logic and Computer Architecture Lab
CO-1	To discern the basics of digital components
CO-2	Design the basic building blocks of a computer: ALU, registers, CPU and memory
CO-3	To recognize the importance of digital systems in computer architecture
CO-4	To implement various algorithms for arithmetic operations .

Course	CSL 303
Code:	
Course:	Computer Graphics Lab
CO-1	Implement various output and filled area primitive algorithms
CO-2	Apply transformation, projection and clipping algorithms on graphical objects.
CO-3	Implementation of curve and fractal generation.
CO-4	Develop a Graphical application/Animation based on learned concept

Course	CSL 304
Code:	
Course:	Skill Lab : Object Oriented Programming Methodology
CO-1	To apply fundamental programming constructs
CO-2	To illustrate the concept of packages, classes and objects.
CO-3	To elaborate the concept of strings, arrays and vectors.
CO-4	To implement the concept of inheritance and interfaces.
CO-5	To implement the concept of exception handling and multithreading
CO-6	To develop GUI based application .

Course	CSM 301
Code:	7
Course:	Mini Project -I A
CO-1	Identify problems based on societal /research needs.
CO-2	Apply Knowledge and skill to solve societal problems in a group.
CO-3	Develop interpersonal skills to work as member of a group or leader
CO-4	Draw the proper inferences from available results through theoretical/ experimental/simulations
CO-5	Analyze the impact of solutions in societal and environmental context for sustainable development.
CO-6	Use standard norms of engineering practices
CO-7	Excel in written and oral communication.
CO-8	Demonstrate capabilities of self-learning in a group, which leads to lifelong learning.
CO-9	Demonstrate project management principles during project work

Second Year: III SEM (REV-2021-2022 'C' Scheme)

Course	CSC 401
Code:	
Course:	Engineering Mathematics – IV
CO-1	Apply the concepts of eigen values and eigen vectors in engineering problems
CO-2	Use the concepts of Complex Integration for evaluating integrals, computing residues & evaluate various contour integrals.
CO-3	Apply the concept of Z- transformation and its inverse in engineering problems
CO-4	Use the concept of probability distribution and sampling theory to engineering problems
CO-5	Apply the concept of Linear Programming Problems of optimization
CO-6	Solve Non-Linear Programming Problems for optimization of engineering problems

Course	CSC 402
Code:	
Course:	Analysis of Algorithms
CO-1	Analyze the running time and space complexity of algorithms .
CO-2	Describe, apply and analyze the complexity of divide and conquer strategy
CO-3	Describe, apply and analyze the complexity of greedy strategy.
CO-4	Describe, apply and analyze the complexity of dynamic programming strategy
CO-5	Explain and apply backtracking, branch and bound.
CO-6	Explain and apply string matching technique.

Course	CSC 403
Code:	
Course:	Database Management Systems
CO-1	Students should be able to explain the fundamentals of a database system
CO-2	Students should be able to design and draw ER and EER diagram for the real life problem.
CO-3	Students should be able to convert conceptual model to relational model and formulate relational algebra queries.
CO-4	Students should be able to design and querying database using SQL.
CO-5	Students should be able to analyze and apply concepts of normalization to relational database design.
CO-6	Students should be able to describe the concept of transaction, concurrency and recovery .

Course	CSC 404
Code:	· ·
Course:	Operating Systems
CO-1	Understand the objectives, functions and structure of OS
CO-2	Analyze the concept of process management and evaluate performance of process scheduling algorithms.
CO-3	Understand and apply the concepts of synchronization and deadlocks
CO-4	Evaluate performance of Memory allocation and replacement policies
CO-5	Understand the concepts of file management.
CO-6	Apply concepts of I/O management and analyze techniques of disk scheduling

Course	CSC 405				
Code:	*				
Course:	Microprocessor				
CO-1	Describe core concepts of 8086 microprocessor				
CO-2	Interpret the instructions of 8086 and write assembly and mixedlanguage programs				
CO-3	Identify the specifications of peripheral chip				
CO-4	Design 8086 based system using memory and periphera chips				
CO-5	Appraise the architecture of advanced processors				
CO-6	Understanding hyperthreading technology				

Course	CSL 401
Code:	
Course:	Analysis of Algorithms Lab
CO-1	To introduce the methods of designing and analyzing algorithms
CO-2	Design and implement efficient algorithms for a specified application
CO-3	Strengthen the ability to identify and apply the suitable algorithm for the given rea I-world problem.
CO-4	Analyze worst-case running time of algorithms and understand fundamental algorithmic problems

Course	CSL 402
Code:	
Course:	Database Management Systems Lab
CO-1	Design ER /EER diagram and convert to relational model for the realworld application. 2
CO-2	Apply DDL, DML, DCL and TCL commands 3
CO-3	Write simple and complex queries 4
CO-4	Use PL / SQL Constructs

Course	CSL 403
Code:	
Course:	Operating System Lab
CO-1	To gain practical experience with designing and implementing concepts of operating systems such as system calls, CPU scheduling, process management, memory management, file systems and deadlock handling using C language in Linux environment.
CO-2	To familiarize students with the architecture of Linux OS .
CO-3	To provide necessary skills for developing and debugging programs in Linux environment
CO-4	To learn programmatically to implement simple operation system mechanisms

Course	CSL 404
Code:	
Course:	Microprocessor Lab
CO-1	Use appropriate instructions to program microprocessor to perform various tasks
CO-2	Develop the program in assembly language for intel 8086 processor
CO-3	Demonstrate the execution and debugging of assembly and mixed language program

Course	CSL 405
Code:	
Course:	Skill Lab: Python Programming
CO-1	To understand basic concepts in python .
CO-2	To explore contents of files, directories and text processing with python
CO-3	To develop program for data structure using built in functions in python.
CO-4	To explore django web framework for developing python-based web application
CO-5	To understand Multithreading concepts using python.
CO-6	To explore numpy and pandas libraries

Course	CSM 401				
Code:					
Course:	Mini Project I – B				
CO-1	Identify problems based on societal /research needs.				
CO-2	Apply Knowledge and skill to solve societal problems in a group.				
CO-3	Develop interpersonal skills to work as member of a group or leader				
CO-4	Draw the proper inferences from available results through theoretical/ experimental/simulations .				
CO-5	Analyze the impact of solutions in societal and environmental context for sustainable development.				
CO-6	Use standard norms of engineering practices				
CO-7	Excel in written and oral communication.				
CO-8	Demonstrate capabilities of self-learning in a group, which leads to lifelong learning.				
CO-9	Demonstrate project management principles during project work.				